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Virtual Haken Conjecture. Let M be compact
3-manifold. If π1(M) is infinite, then M has a
finite cover N which contains an incompressible
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Def. A surface Σ 6= S2 embedded in M3 is incom-
pressible if π1(Σ) →π1(M) is 1-1.
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Incompressible: For Σ = S1 ×S1 × {pt} ⊂ T 3, the
map on π1 is: Z⊕Z ,→Z⊕Z⊕Z.

Similarly, Σ× {pt} is an incompressible surface in
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Def. A compact M3 is Haken if it is irreducible
and contains an incompressible surface.

Irreducible: Every embedded S2 bounds a ball,
that is, M is not a connected sum.
An arbitrary M3 is of the form M1#M2# · · ·#Mn

where the Mk can’t be further decomposed.

If M is Haken, then π1(M) is infinite since π1(Σ) ≤
π1(M) and Σ is among:

Haken: T 3 Non-Haken: π1 finite, e.g. S3.
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S3, Dehn surgery creates infinitely many compact
3-manifolds via M = X ∪φ (S1×D2)

K
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X = S3 \ int(N (K ))

All but 4 Dehn surgeries on the figure-8 knot are
non-Haken 3-manifolds with infinite π1.
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ducible compact 3-manifold. If π1(M) is infinite,
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Closely related question: Does M contain an im-
mersed incompressible surface? Equivalently, does
π1(M) contain the fundamental group of some sur-
face?
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A lot of evidence for this conjecture including:

• True for all the manifolds coming from the
figure-8 knot. [D-Thurston 2003].

• Weaker results for surgery on any knot,
e.g. [Cooper-Long 1997, Cooper-Walsh 2006].

• True for all 11,000 examples in a census of
simple 3-manifolds. In one case, a cover of
degree 5,050 was needed! [D-Thurston 2003].
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• Study of 3-manifolds uses many different parts
of mathematics.
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1 < [π1(M) : H ] <∞.

This seemingly simple conjecture was only proved
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Geometrization (Thurston/Perelman):
A compact M3 can be cut along spheres and in-
compressible tori into pieces which admit geomet-
ric structures. That is, each piece admits a homo-
geneous Riemannian metric modeled on one of

E3, S3, H3, S2×R, H2×R, Nil, Sol, �SL2R.

Ex: T 3 is Euclidean as = E3/Z3, whereas S2 ×S1

has a S2×R geometry.

The case H3 of hyperbolic geometry is the generic
one; manifolds with the other geometries have been
classified, and we know the VHC holds for them.
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i.e. one with a metric of constant sectional curva-
ture −1. Equivalently, M =H3/Γ, where
Γ≤ Isom+(H3) = Möbius(Ĉ) = PSL2(C).

Here H3 = {
x ∈R3

∣∣ |x| < 1
}

with the metric where

dsH3 = 2/(1−|x|2)dsE3
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Thm (Perelman 2003). Let M be a compact 3-
manifold. If π1(M) is infinite, then M has a non-
trivial finite cover. Equivalently, π1(M) has a finite-
index proper subgroup.

Proof. Reduce to the case when M is hyperbolic.
As M is compact, π1(M) is finitely generated and
also π1(M) ≤ PSL2(C). A finitely generated group
of matrices has many finite index subgroups by
[Mal’tsev 1940s]. Idea: For PSL2(Z) we build the
needed subgroup Λ by considering:

1 →Λ→ PSL2(Z) → PSL2(Z/(pZ)) → 1.

Though this theorem is a simple topological/group
theoretic statement, all known proofs rely on Ge-
ometrization and thus start with Hamilton’s Ricci
flow. . .
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Generalizations:

[Lubotzky 1995] Many more subgroups than just
the congruence ones.

[D-Thurston 2006] Studied random Heegaard split-
tings. For a finite simple group Q, the number of
Q-covers is Poisson distributed with mean

µ= |H2(Q;Z)|/|Out(Q)|.
E.g. the probability of an An cover is 1−e ≈ 0.6.
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Conj. M3 compact hypebolic. Then M has a finite
cover N where H2(N ;Z) ∼= H 1(N ;Z) 6= 0.

Equivalently, π1(M) has a finite-index subgroup H

where H �Z.

A tower of regular finite covers

M ← M1 ← M2 ← M3 ←···
exhausts M if

⋂
π1(Mn) = 1.

Conj. If Mn exhaust M , then H 1(Mn;Z) 6= 0 for
some n.
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Thm (Calegari-D 2006). There exists an M with
exahustion Mn where H 1(Mn) = 0 for all n.

Proof conditional on Langlands for GL2 and the
Generalized Riemann Hypothesis!

Thankfully, Boston-Ellenberg (2006) were able to
analyze these examples unconditionally, using our
picture:
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