Surfaces in finite covers of 3-manifolds: The Virtual Haken Conjecture

Nathan M. Dunfield University of Illinois

This talk available at http://dunfield.info/

Surfaces in finite covers of 3-manifolds: The Virtual Haken Conjecture

In the 1960s, Waldhausen proposed:

Nathan M. Dunfield University of Illinois **Virtual Haken Conjecture.** Let *M* be compact 3-manifold. If $\pi_1(M)$ is infinite, then *M* has a finite cover *N* which contains an incompressible surface.

This talk available at http://dunfield.info/

Natural place to start: studying surfaces Σ^2 in M^3 . Need to ignore things like:

Convention: All manifolds are orientable.

Def. A surface $\Sigma \neq S^2$ embedded in M^3 is incompressible if $\pi_1(\Sigma) \rightarrow \pi_1(M)$ is 1-1.

In the 1960s, Waldhausen proposed:

Virtual Haken Conjecture. Let *M* be compact 3-manifold. If $\pi_1(M)$ is infinite, then *M* has a finite cover *N* which contains an incompressible surface.

Natural place to start: studying surfaces Σ^2 in M^3 . Need to ignore things like:

Convention: All manifolds are orientable.

Def. A surface $\Sigma \neq S^2$ embedded in M^3 is incompressible if $\pi_1(\Sigma) \rightarrow \pi_1(M)$ is 1-1.

Recall that $\pi_1(M)$ is the group of loops in *M*, up to homotopy:

Ex.
$$\pi_1(S^3) = 1$$
.
 $\pi_1(T^3) = \mathbb{Z}^3$, where $T = S^1 \times S^1 \times S^1 = \mathbb{R}^3 / \mathbb{Z}^3$.
 $\pi_1(W) =$
 $\langle a, b \mid a^2 b^2 a^2 b^{-1} a b^{-1} = b^2 a^2 b^2 a^{-1} b a^{-1} = 1 \rangle$.

Compressible:

Recall that $\pi_1(M)$ is the group of loops in M, up to homotopy:

Ex.
$$\pi_1(S^3) = 1$$
.
 $\pi_1(T^3) = \mathbb{Z}^3$, where $T = S^1 \times S^1 \times S^1 = \mathbb{R}^3 / \mathbb{Z}^3$.
 $\pi_1(W) =$
 $\langle a, b \mid a^2 b^2 a^2 b^{-1} a b^{-1} = b^2 a^2 b^2 a^{-1} b a^{-1} = 1 \rangle$.

Compressible:

Incompressible: For $\Sigma = S^1 \times S^1 \times \{\text{pt}\} \subset T^3$, the map on π_1 is: $\mathbb{Z} \oplus \mathbb{Z} \hookrightarrow \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$.

Similarly, $\Sigma \times \{pt\}$ is an incompressible surface in $M^3 = \Sigma \times S^1$.

Def. A compact M^3 is Haken if it is irreducible and contains an incompressible surface.

Irreducible: Every embedded S^2 bounds a ball, that is, M is not a connected sum. An arbitrary M^3 is of the form $M_1 # M_2 # \cdots # M_n$ where the M_k can't be further decomposed.

If *M* is Haken, then $\pi_1(M)$ is infinite since $\pi_1(\Sigma) \le \pi_1(M)$ and Σ is among:

Haken: T^3 Non-Haken: π_1 finite, e.g. S^3 .

Incompressible: For $\Sigma = S^1 \times S^1 \times \{\text{pt}\} \subset T^3$, the map on π_1 is: $\mathbb{Z} \oplus \mathbb{Z} \hookrightarrow \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$.

Similarly, $\Sigma \times \{pt\}$ is an incompressible surface in $M^3 = \Sigma \times S^1$.

Def. A compact M^3 is Haken if it is irreducible and contains an incompressible surface.

Irreducible: Every embedded S^2 bounds a ball, that is, M is not a connected sum. An arbitrary M^3 is of the form $M_1 \# M_2 \# \cdots \# M_n$

where the M_k can't be further decomposed.

If *M* is Haken, then $\pi_1(M)$ is infinite since $\pi_1(\Sigma) \le \pi_1(M)$ and Σ is among:

Haken: T^3 Non-Haken: π_1 finite, e.g. S^3 .

 π_1 condition is not sufficient: Given a knot *K* in S^3 , Dehn surgery creates infinitely many compact 3-manifolds via $M = X \cup_{\phi} (S^1 \times D^2)$

All but 4 Dehn surgeries on the figure-8 knot are non-Haken 3-manifolds with infinite π_1 .

 π_1 condition is not sufficient: Given a knot *K* in S^3 , Dehn surgery creates infinitely many compact 3-manifolds via $M = X \cup_{\phi} (S^1 \times D^2)$

All but 4 Dehn surgeries on the figure-8 knot are non-Haken 3-manifolds with infinite π_1 .

Virtual Haken Conjecture. Let *M* be an irreducible compact 3-manifold. If $\pi_1(M)$ is infinite, then *M* has a finite cover *N* which is Haken.

Closely related question: Does *M* contain an *immersed* incompressible surface? Equivalently, does $\pi_1(M)$ contain the fundamental group of some surface?

Virtual Haken Conjecture. Let *M* be an irreducible compact 3-manifold. If $\pi_1(M)$ is infinite, then *M* has a finite cover *N* which is Haken.

Closely related question: Does *M* contain an *immersed* incompressible surface? Equivalently, does $\pi_1(M)$ contain the fundamental group of some surface?

A lot of evidence for this conjecture including:

- True for all the manifolds coming from the figure-8 knot. [D-Thurston 2003].
- Weaker results for surgery on any knot, e.g. [Cooper-Long 1997, Cooper-Walsh 2006].
- True for all 11,000 examples in a census of simple 3-manifolds. In one case, a cover of degree 5,050 was needed! [D-Thurston 2003].

A lot of evidence for this conjecture including:

- True for all the manifolds coming from the figure-8 knot. [D-Thurston 2003].
- Weaker results for surgery on any knot, e.g. [Cooper-Long 1997, Cooper-Walsh 2006].
- True for all 11,000 examples in a census of simple 3-manifolds. In one case, a cover of degree 5,050 was needed! [D-Thurston 2003].

Rest of talk:

- Make the conjecture weaker and prove it.
- Make the conjecture stronger and disprove it.

Real point of talk:

- Role of geometry is crucial for this seemingly topological question (Thurston/Perelman).
- Study of 3-manifolds uses many different parts of mathematics.

Rest of talk:

- Make the conjecture weaker and prove it.
- Make the conjecture stronger and disprove it.

Real point of talk:

- Role of geometry is crucial for this seemingly topological question (Thurston/Perelman).
- Study of 3-manifolds uses many different parts of mathematics.

Virtual Haken Conjecture. Let *M* be an irreducible compact 3-manifold. If $\pi_1(M)$ is infinite, then *M* has a finite cover *N* which is Haken. **Virtual Haken Conjecture.** Let *M* be an irreducible compact 3-manifold. If $\pi_1(M)$ is infinite, then *M* has a finite cover *N* which is Haken. **Conj.** Let *M* be an irreducible compact 3-manifold. If $\pi_1(M)$ is infinite, then *M* has a non-trivial finite cover.

Equivalently, $\pi_1(M)$ has a subgroup *H* with $1 < [\pi_1(M) : H] < \infty$.

This seemingly simple conjecture was only proved in 2003!

Conj. Let *M* be an irreducible compact 3-manifold. If $\pi_1(M)$ is infinite, then *M* has a non-trivial finite cover.

Equivalently, $\pi_1(M)$ has a subgroup *H* with $1 < [\pi_1(M) : H] < \infty$.

This seemingly simple conjecture was only proved in 2003!

Geometrization (Thurston/Perelman):

A compact M^3 can be cut along spheres and incompressible tori into pieces which admit geometric structures. That is, each piece admits a homogeneous Riemannian metric modeled on one of

 \mathbb{E}^3 , S^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil, Sol, $\widetilde{\mathrm{SL}_2\mathbb{R}}$.

Ex: T^3 is Euclidean as $= \mathbb{E}^3 / \mathbb{Z}^3$, whereas $S^2 \times S^1$ has a $S^2 \times \mathbb{R}$ geometry.

The case \mathbb{H}^3 of hyperbolic geometry is the generic one; manifolds with the other geometries have been classified, and we know the VHC holds for them.

Geometrization (Thurston/Perelman):

A compact M^3 can be cut along spheres and incompressible tori into pieces which admit geometric structures. That is, each piece admits a homogeneous Riemannian metric modeled on one of

 \mathbb{E}^3 , S^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil, Sol, $\widetilde{\mathrm{SL}_2\mathbb{R}}$.

Ex: T^3 is Euclidean as $= \mathbb{E}^3 / \mathbb{Z}^3$, whereas $S^2 \times S^1$ has a $S^2 \times \mathbb{R}$ geometry.

The case \mathbb{H}^3 of hyperbolic geometry is the generic one; manifolds with the other geometries have been classified, and we know the VHC holds for them.

From now on, *M* will be a hyperbolic 3-manifold, i.e. one with a metric of constant sectional curvature -1. Equivalently, $M = \mathbb{H}^3/\Gamma$, where $\Gamma \leq \text{Isom}^+(\mathbb{H}^3) = \text{M\"obius}(\hat{\mathbb{C}}) = \text{PSL}_2(\mathbb{C}).$

Here $\mathbb{H}^3 = \{\mathbf{x} \in \mathbb{R}^3 | |\mathbf{x}| < 1\}$ with the metric where

 $ds_{\mathbb{H}^3} = 2/(1 - |\mathbf{x}|^2) ds_{\mathbb{E}^3}$

From now on, *M* will be a hyperbolic 3-manifold, i.e. one with a metric of constant sectional curvature -1. Equivalently, $M = \mathbb{H}^3/\Gamma$, where $\Gamma \leq \text{Isom}^+(\mathbb{H}^3) = \text{M\"obius}(\hat{\mathbb{C}}) = \text{PSL}_2(\mathbb{C}).$

Here $\mathbb{H}^3 = \{\mathbf{x} \in \mathbb{R}^3 | |\mathbf{x}| < 1\}$ with the metric where

 $ds_{\mathbb{H}^3} = 2/(1 - |\mathbf{x}|^2) ds_{\mathbb{E}^3}$

Thm (Perelman 2003). Let *M* be a compact 3manifold. If $\pi_1(M)$ is infinite, then *M* has a nontrivial finite cover. Equivalently, $\pi_1(M)$ has a finiteindex proper subgroup.

Proof. Reduce to the case when *M* is hyperbolic. As *M* is compact, $\pi_1(M)$ is finitely generated and also $\pi_1(M) \leq \text{PSL}_2(\mathbb{C})$. A finitely generated group of matrices has many finite index subgroups by [Mal'tsev 1940s]. Idea: For $\text{PSL}_2(\mathbb{Z})$ we build the needed subgroup Λ by considering:

 $1 \rightarrow \Lambda \rightarrow \mathrm{PSL}_2(\mathbb{Z}) \rightarrow \mathrm{PSL}_2(\mathbb{Z}/(p\mathbb{Z})) \rightarrow 1.$

Though this theorem is a simple topological/group theoretic statement, all known proofs rely on Geometrization and thus start with Hamilton's Ricci flow... Thm (Perelman 2003). Let *M* be a compact 3manifold. If $\pi_1(M)$ is infinite, then *M* has a nontrivial finite cover. Equivalently, $\pi_1(M)$ has a finiteindex proper subgroup.

Proof. Reduce to the case when *M* is hyperbolic. As *M* is compact, $\pi_1(M)$ is finitely generated and also $\pi_1(M) \leq \text{PSL}_2(\mathbb{C})$. A finitely generated group of matrices has many finite index subgroups by [Mal'tsev 1940s]. Idea: For $\text{PSL}_2(\mathbb{Z})$ we build the needed subgroup Λ by considering:

 $1 \to \Lambda \to \mathrm{PSL}_2(\mathbb{Z}) \to \mathrm{PSL}_2(\mathbb{Z}/(p\mathbb{Z})) \to 1.$

Though this theorem is a simple topological/group theoretic statement, all known proofs rely on Geometrization and thus start with Hamilton's Ricci flow...

Generalizations:

[Lubotzky 1995] Many more subgroups than just the congruence ones.

[D-Thurston 2006] Studied random Heegaard splittings. For a finite simple group *Q*, the number of *Q*-covers is Poisson distributed with mean

 $\mu = |H_2(Q;\mathbb{Z})| / |\operatorname{Out}(Q)|.$

E.g. the probability of an A_n cover is $1 - e \approx 0.6$.

Generalizations:

[Lubotzky 1995] Many more subgroups than just the congruence ones.

[D-Thurston 2006] Studied random Heegaard splittings. For a finite simple group *Q*, the number of *Q*-covers is Poisson distributed with mean

 $\mu = |H_2(Q;\mathbb{Z})| / |\operatorname{Out}(Q)|.$

E.g. the probability of an A_n cover is $1 - e \approx 0.6$.

Conj. M^3 compact hypebolic. Then M has a finite cover N where $H_2(N;\mathbb{Z}) \cong H^1(N;\mathbb{Z}) \neq 0$.

Equivalently, $\pi_1(M)$ has a finite-index subgroup H where $H \rightarrow \mathbb{Z}$.

A tower of regular finite covers

 $M \leftarrow M_1 \leftarrow M_2 \leftarrow M_3 \leftarrow \cdots$

exhausts M if $\bigcap \pi_1(M_n) = 1$.

Conj. If M_n exhaust M, then $H^1(M_n; \mathbb{Z}) \neq 0$ for some n.

Conj. M^3 compact hypebolic. Then M has a finite cover N where $H_2(N;\mathbb{Z}) \cong H^1(N;\mathbb{Z}) \neq 0$.

Equivalently, $\pi_1(M)$ has a finite-index subgroup H where $H \rightarrow \mathbb{Z}$.

A tower of regular finite covers

$$M \leftarrow M_1 \leftarrow M_2 \leftarrow M_3 \leftarrow \cdots$$

exhausts M if $\bigcap \pi_1(M_n) = 1$.

Conj. If M_n exhaust M, then $H^1(M_n; \mathbb{Z}) \neq 0$ for some n.

Thm (Calegari-D 2006). There exists an M with exahustion M_n where $H^1(M_n) = 0$ for all n.

Proof conditional on Langlands for GL₂ and the Generalized Riemann Hypothesis!

Thankfully, Boston-Ellenberg (2006) were able to analyze these examples unconditionally, using our picture:

Thm (Calegari-D 2006). There exists an M with exahustion M_n where $H^1(M_n) = 0$ for all n.

Proof conditional on Langlands for GL₂ and the Generalized Riemann Hypothesis!

Thankfully, Boston-Ellenberg (2006) were able to analyze these examples unconditionally, using our picture:

