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In the 1960s, Waldhausen proposed:

Virtual Haken Conjecture. Let M be compact
3-manifold. If m1(M) is infinite, then M has a
finite cover N which contains an incompressible
surface.



Natural place to start: studying surfaces =2 in M>.
Need to ignore things like:
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Incompressible: For 2 = Sl x sl x {pttc T 3. the
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Def. A compact M? is Haken if it is irreducible
and contains an incompressible surface.

Irreducible: Every embedded S bounds a ball,
that 1s, M 1s not a connected sum.

An arbitrary M3 is of the form Mj#Mo#---#M,,
where the M;. can’t be further decomposed.

If M is Haken, then 71 (M) 1s infinite since 71 (X) <
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n1 condition 1s not sufficient: Given a knot K in
$3, Dehn surgery creates infinitely many compact
3-manifolds via M = X Uy, (S x D?)

X = S8\ _iﬁi(Kl(K))

All but 4 Dehn surgeries on the figure-8 knot are
non-Haken 3-manifolds with infinite 7.
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Virtual Haken Conjecture. Let M be an irre-
ducible compact 3-manifold. If w1(M) is infinite,
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71 (M) contain the fundamental group of some sur-
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e Role of geometry is crucial for this seemingly
topological question (Thurston/Perelman).

e Study of 3-manifolds uses many different parts
of mathematics.
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Conj. Let M be an irreducible compact 3-manifold.
If w1 (M) is infinite, then M has a non-trivial finite
COVer.
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This seemingly simple conjecture was only proved
in 2003!
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one; manifolds with the other geometries have been
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I < Isom™ (H3) = Mobius(€) = PSL,(C).

Here H3 = {xe [Ri3| x| < 1} with the metric where
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Thm (Perelman 2003). Let M be a compact 3-
manifold. If my(M) is infinite, then M has a non-
trivial finite cover. Equivalently, 1 (M) has a finite-
index proper subgroup.

Proof. Reduce to the case when M is hyperbolic.
As M is compact, m1(M) is finitely generated and
also 1 (M) < PSLo(C). A finitely generated group
of matrices has many finite index subgroups by
[Mal’tsev 1940s]. Idea: For PSLy(Z) we build the
needed subgroup A by considering:

1—- A—PSLy(Z) — PSLy(Z/(pZ)) — 1.

Though this theorem is a simple topological/group
theoretic statement, all known proofs rely on Ge-
ometrization and thus start with Hamilton’s Ricci
flow. ..
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Generalizations:

[Lubotzky 1995] Many more subgroups than just
the congruence ones.

[D-Thurston 2006] Studied random Heegaard split-
tings. For a finite simple group Q, the number of
Q-covers 1s Poisson distributed with mean

p = 1H2(Q; 2)|/10ut(Q)l.

E.g. the probability of an A, coveris 1 —e = 0.6.
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Conj. M3 compact hypebolic. Then M has a finite
cover N where H»(N;Z) = HY(N;7) #0.

Equivalently, 7r1 (M) has a finite-index subgroup H
where H — Z.

A tower of regular finite covers

M— My — My «— Mz« ---

exhausts M if Nm1(M;,) = 1.

Conj. If M, exhaust M, then H! (My;7) # 0 for
some 1.



Conj. M3 compact hypebolic. Then M has a finite
cover N where H»(N;Z) = HY(N;2) #0.

Equivalently, r1 (M) has a finite-index subgroup H
where H — Z.

A tower of regular finite covers

M— My — My «— Mz« ---

exhausts M if Nm1(M;,) = 1.

Conj. If M, exhaust M, then H (M,;;Z) # 0 for
some .

Thm (Calegari-D 2006). There exists an M with
exahustion M,, where HY(M,,) = 0 for all n.

Proof conditional on Langlands for GLy and the
Generalized Riemann Hypothesis!

Thankfully, Boston-Ellenberg (2006) were able to
analyze these examples unconditionally, using our

picture:
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