Surfaces in finite covers of 3-manifolds:
 The Virtual Haken Conjecture

Nathan M. Dunfield
University of Illinois

This talk available at http://dunfield.info/

Surfaces in finite covers of 3-manifolds:
The Virtual Haken Conjecture

Nathan M. Dunfield
University of Illinois

In the 1960s, Waldhausen proposed:

Virtual Haken Conjecture. Let M be compact 3-manifold. If $\pi_{1}(M)$ is infinite, then M has a finite cover N which contains an incompressible surface.

This talk available at http://dunfield.info/

Natural place to start: studying surfaces Σ^{2} in M^{3}. Need to ignore things like:

Convention: All manifolds are orientable.

Def. A surface $\Sigma \neq S^{2}$ embedded in M^{3} is incompressible if $\pi_{1}(\Sigma) \rightarrow \pi_{1}(M)$ is 1-1.

Recall that $\pi_{1}(M)$ is the group of loops in M, up

Natural place to start: studying surfaces Σ^{2} in M^{3}. Need to ignore things like:

Convention: All manifolds are orientable.

Def. A surface $\Sigma \neq S^{2}$ embedded in M^{3} is incompressible if $\pi_{1}(\Sigma) \rightarrow \pi_{1}(M)$ is 1-1.
to homotopy:

Ex. $\pi_{1}\left(S^{3}\right)=1$.
$\pi_{1}\left(T^{3}\right)=\mathbb{Z}^{3}$, where $T=S^{1} \times S^{1} \times S^{1}=\mathbb{R}^{3} / \mathbb{Z}^{3}$.

$$
\pi_{1}(W)=
$$

$$
\left\langle a, b \mid a^{2} b^{2} a^{2} b^{-1} a b^{-1}=b^{2} a^{2} b^{2} a^{-1} b a^{-1}=1\right\rangle
$$

Compressible:

Recall that $\pi_{1}(M)$ is the group of loops in M, up to homotopy:

Ex. $\pi_{1}\left(S^{3}\right)=1$. $\pi_{1}\left(T^{3}\right)=\mathbb{Z}^{3}$, where $T=S^{1} \times S^{1} \times S^{1}=\mathbb{R}^{3} / \mathbb{Z}^{3}$. $\pi_{1}(W)=$ $\left\langle a, b \mid a^{2} b^{2} a^{2} b^{-1} a b^{-1}=b^{2} a^{2} b^{2} a^{-1} b a^{-1}=1\right\rangle$.

Compressible:

Incompressible: For $\Sigma=S^{1} \times S^{1} \times\{\mathrm{pt}\} \subset T^{3}$, the map on π_{1} is: $\mathbb{Z} \oplus \mathbb{Z} \hookrightarrow \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$.

Similarly, $\Sigma \times\{\mathrm{pt}\}$ is an incompressible surface in $M^{3}=\Sigma \times S^{1}$.

Def. A compact M^{3} is Haken if it is irreducible and contains an incompressible surface.

Irreducible: Every embedded S^{2} bounds a ball, that is, M is not a connected sum.
An arbitrary M^{3} is of the form $M_{1} \# M_{2} \# \cdots \# M_{n}$ where the M_{k} can't be further decomposed.

If M is Haken, then $\pi_{1}(M)$ is infinite since $\pi_{1}(\Sigma) \leq$ $\pi_{1}(M)$ and Σ is among:

Haken: $T^{3} \quad$ Non-Haken: π_{1} finite, e.g. S^{3}.

Incompressible: For $\Sigma=S^{1} \times S^{1} \times\{\mathrm{pt}\} \subset T^{3}$, the map on π_{1} is: $\mathbb{Z} \oplus \mathbb{Z} \hookrightarrow \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$.

Similarly, $\Sigma \times\{\mathrm{pt}\}$ is an incompressible surface in $M^{3}=\Sigma \times S^{1}$.

Def. A compact M^{3} is Haken if it is irreducible and contains an incompressible surface.

Irreducible: Every embedded S^{2} bounds a ball, that is, M is not a connected sum.
An arbitrary M^{3} is of the form $M_{1} \# M_{2} \# \cdots \# M_{n}$ where the M_{k} can't be further decomposed.

If M is Haken, then $\pi_{1}(M)$ is infinite since $\pi_{1}(\Sigma) \leq$ $\pi_{1}(M)$ and Σ is among: 0 Haken: $T^{3} \quad$ Non-Haken: π_{1} finite, e.g. S^{3}.
π_{1} condition is not sufficient: Given a knot K in S^{3}, Dehn surgery creates infinitely many compact 3-manifolds via $M=X \cup_{\phi}\left(S^{1} \times D^{2}\right)$

$$
X=S^{3} \backslash \operatorname{int}(N(K))
$$

All but 4 Dehn surgeries on the figure- 8 knot are non-Haken 3-manifolds with infinite π_{1}.
π_{1} condition is not sufficient: Given a knot K in S^{3}, Dehn surgery creates infinitely many compact 3-manifolds via $M=X \cup_{\phi}\left(S^{1} \times D^{2}\right)$

Virtual Haken Conjecture. Let M be an irreducible compact 3-manifold. If $\pi_{1}(M)$ is infinite, then M has a finite cover N which is Haken.

Closely related question: Does M contain an immersed incompressible surface? Equivalently, does $\pi_{1}(M)$ contain the fundamental group of some surface?

All but 4 Dehn surgeries on the figure- 8 knot are non-Haken 3-manifolds with infinite π_{1}.

Virtual Haken Conjecture. Let M be an irreducible compact 3-manifold. If $\pi_{1}(M)$ is infinite, then M has a finite cover N which is Haken.

Closely related question: Does M contain an immersed incompressible surface? Equivalently, does $\pi_{1}(M)$ contain the fundamental group of some surface?

A lot of evidence for this conjecture including:

- True for all the manifolds coming from the figure-8 knot. [D-Thurston 2003].
- Weaker results for surgery on any knot, e.g. [Cooper-Long 1997, Cooper-Walsh 2006].
- True for all 11,000 examples in a census of simple 3-manifolds. In one case, a cover of degree 5,050 was needed! [D-Thurston 2003].
- Weaker results for surgery on any knot, e.g. [Cooper-Long 1997, Cooper-Walsh 2006].
- True for all 11,000 examples in a census of simple 3-manifolds. In one case, a cover of degree 5,050 was needed! [D-Thurston 2003].
A lot of evidence for this conjecture including:
- True for all the manifolds coming from the figure-8 knot. [D-Thurston 2003].

Rest of talk:

- Make the conjecture weaker and prove it.
- Make the conjecture stronger and disprove it.

Real point of talk:

- Role of geometry is crucial for this seemingly topological question (Thurston/Perelman).
- Study of 3-manifolds uses many different parts of mathematics.

Rest of talk:

- Make the conjecture weaker and prove it.
- Make the conjecture stronger and disprove it.

Real point of talk:

- Role of geometry is crucial for this seemingly topological question (Thurston/Perelman).
- Study of 3-manifolds uses many different parts of mathematics.

Virtual Haken Conjecture. Let M be an irreducible compact 3-manifold. If $\pi_{1}(M)$ is infinite, then M has a finite cover N which is Haken.

Conj. Let M be an irreducible compact 3-manifold. If $\pi_{1}(M)$ is infinite, then M has a non-trivial finite cover.

Virtual Haken Conjecture. Let M be an irreducible compact 3-manifold. If $\pi_{1}(M)$ is infinite, then M has a finite cover N which is Haken.

Equivalently, $\pi_{1}(M)$ has a subgroup H with $1<\left[\pi_{1}(M): H\right]<\infty$.

This seemingly simple conjecture was only proved in 2003!

Geometrization (Thurston/Perelman):

A compact M^{3} can be cut along spheres and incompressible tori into pieces which admit geomet-

Conj. Let M be an irreducible compact 3-manifold. If $\pi_{1}(M)$ is infinite, then M has a non-trivial finite cover.

Equivalently, $\pi_{1}(M)$ has a subgroup H with $1<\left[\pi_{1}(M): H\right]<\infty$.

This seemingly simple conjecture was only proved in 2003!
ric structures. That is, each piece admits a homogeneous Riemannian metric modeled on one of

$$
\mathbb{E}^{3}, S^{3}, \mathbb{H}^{3}, S^{2} \times \mathbb{R}, \mathbb{H}^{2} \times \mathbb{R}, \text { Nil, Sol, } \widetilde{\mathrm{SL}_{2} \mathbb{R}}
$$

Ex: T^{3} is Euclidean as $=\mathbb{E}^{3} / \mathbb{Z}^{3}$, whereas $S^{2} \times S^{1}$ has a $S^{2} \times \mathbb{R}$ geometry.

The case \mathbb{H}^{3} of hyperbolic geometry is the generic one; manifolds with the other geometries have been classified, and we know the VHC holds for them.

Geometrization (Thurston/Perelman):

A compact M^{3} can be cut along spheres and incompressible tori into pieces which admit geometric structures. That is, each piece admits a homogeneous Riemannian metric modeled on one of

$$
\mathbb{E}^{3}, S^{3}, \mathbb{H}^{3}, S^{2} \times \mathbb{R}, \mathbb{H}^{2} \times \mathbb{R}, \text { Nil, Sol, } \widetilde{\mathrm{SL}_{2} \mathbb{R}} .
$$

Ex: T^{3} is Euclidean as $=\mathbb{E}^{3} / \mathbb{Z}^{3}$, whereas $S^{2} \times S^{1}$ has a $S^{2} \times \mathbb{R}$ geometry.

The case \mathbb{H}^{3} of hyperbolic geometry is the generic one; manifolds with the other geometries have been classified, and we know the VHC holds for them.

From now on, M will be a hyperbolic 3-manifold, i.e. one with a metric of constant sectional curvature -1 . Equivalently, $M=\mathbb{H}^{3} / \Gamma$, where $\Gamma \leq \operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right)=\operatorname{Möbius}(\hat{\mathbb{C}})=\operatorname{PSL}_{2}(\mathbb{C})$.

Here $\mathbb{H}^{3}=\left\{\mathbf{x} \in \mathbb{R}^{3}| | \mathbf{x} \mid<1\right\}$ with the metric where

$$
d s_{\mathbb{H}^{3}}=2 /\left(1-|\mathbf{x}|^{2}\right) d s_{\mathbb{E}^{3}}
$$

From now on, M will be a hyperbolic 3-manifold, i.e. one with a metric of constant sectional curvature -1 . Equivalently, $M=\mathbb{H}^{3} / \Gamma$, where $\Gamma \leq \operatorname{Isom}^{+}\left(\mathbb{W}^{3}\right)=\operatorname{Möbius}(\hat{\mathbb{C}})=\operatorname{PSL}_{2}(\mathbb{C})$.

Here $\mathbb{H}^{3}=\left\{\mathbf{x} \in \mathbb{R}^{3}| | \mathbf{x} \mid<1\right\}$ with the metric where

$$
d s_{\mathbb{H}^{3}}=2 /\left(1-|\mathbf{x}|^{2}\right) d s_{\mathbb{E}^{3}}
$$

Thm (Perelman 2003). Let M be a compact 3manifold. If $\pi_{1}(M)$ is infinite, then M has a nontrivial finite cover. Equivalently, $\pi_{1}(M)$ has a finiteindex proper subgroup.

Proof. Reduce to the case when M is hyperbolic. As M is compact, $\pi_{1}(M)$ is finitely generated and also $\pi_{1}(M) \leq \mathrm{PSL}_{2}(\mathbb{C})$. A finitely generated group of matrices has many finite index subgroups by [Mal'tsev 1940s]. Idea: For $\mathrm{PSL}_{2}(\mathbb{Z})$ we build the needed subgroup Λ by considering:

$$
1 \rightarrow \Lambda \rightarrow \operatorname{PSL}_{2}(\mathbb{Z}) \rightarrow \operatorname{PSL}_{2}(\mathbb{Z} /(p \mathbb{Z})) \rightarrow 1
$$

Though this theorem is a simple topological/group theoretic statement, all known proofs rely on Geometrization and thus start with Hamilton's Ricci flow...

Thm (Perelman 2003). Let M be a compact 3manifold. If $\pi_{1}(M)$ is infinite, then M has a nontrivial finite cover. Equivalently, $\pi_{1}(M)$ has a finiteindex proper subgroup.

Proof. Reduce to the case when M is hyperbolic. As M is compact, $\pi_{1}(M)$ is finitely generated and also $\pi_{1}(M) \leq \mathrm{PSL}_{2}(\mathbb{C})$. A finitely generated group of matrices has many finite index subgroups by [Mal'tsev 1940s]. Idea: For $\mathrm{PSL}_{2}(\mathbb{Z})$ we build the needed subgroup Λ by considering:

$$
1 \rightarrow \Lambda \rightarrow \operatorname{PSL}_{2}(\mathbb{Z}) \rightarrow \operatorname{PSL}_{2}(\mathbb{Z} /(p \mathbb{Z})) \rightarrow 1
$$

Though this theorem is a simple topological/group theoretic statement, all known proofs rely on Geometrization and thus start with Hamilton's Ricci flow...

Generalizations:

[Lubotzky 1995] Many more subgroups than just the congruence ones.
[D-Thurston 2006] Studied random Heegaard splittings. For a finite simple group Q, the number of Q-covers is Poisson distributed with mean

$$
\mu=\left|H_{2}(Q ; \mathbb{Z})\right| /|\operatorname{Out}(Q)| .
$$

E.g. the probability of an A_{n} cover is $1-e \approx 0.6$.

Generalizations:

[Lubotzky 1995] Many more subgroups than just the congruence ones.
[D-Thurston 2006] Studied random Heegaard splittings. For a finite simple group Q, the number of Q-covers is Poisson distributed with mean

$$
\mu=\left|H_{2}(Q ; \mathbb{Z})\right| /|\operatorname{Out}(Q)| .
$$

E.g. the probability of an A_{n} cover is $1-e \approx 0.6$.

Conj. M^{3} compact hypebolic. Then M has a finite cover N where $H_{2}(N ; \mathbb{Z}) \cong H^{1}(N ; \mathbb{Z}) \neq 0$.

Equivalently, $\pi_{1}(M)$ has a finite-index subgroup H where $H \rightarrow \mathbb{Z}$.

A tower of regular finite covers

$$
M \leftarrow M_{1} \leftarrow M_{2} \leftarrow M_{3} \leftarrow \cdots
$$

exhausts M if $\cap \pi_{1}\left(M_{n}\right)=1$.

Conj. If M_{n} exhaust M, then $H^{1}\left(M_{n} ; \mathbb{Z}\right) \neq 0$ for some n.

Thm (Calegari-D 2006). There exists an M with exahustion M_{n} where $H^{1}\left(M_{n}\right)=0$ for all n.

Proof conditional on Langlands for GL_{2} and the Generalized Riemann Hypothesis!

Thankfully, Boston-Ellenberg (2006) were able to analyze these examples unconditionally, using our picture:

Thm (Calegari-D 2006). There exists an M with exahustion M_{n} where $H^{1}\left(M_{n}\right)=0$ for all n.

Proof conditional on Langlands for GL_{2} and the Generalized Riemann Hypothesis!

Thankfully, Boston-Ellenberg (2006) were able to analyze these examples unconditionally, using our picture:

