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In contrast to higher dimensions, many proper-

ties of M3 are algorithmically computable.

[Haken 1961] Whether a knot in S3 is unknotted.

More generally, find the simplest surface repre-

senting a class in H2(M ;Z).

[Jaco-Oertel 1984] WhetherM contains an incom-

pressible surface.

[Rubinstein-Thompson 1995] Whether M is S3.

Casson showed this allows finding connected sum

decompositions.

[Haken-Hemion-Matveev] Whether two Haken 3-

manifolds are homeomorphic.
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Thurston and Perelman: 3-manifolds have canon-

ical decompositions into geometric pieces mod-

eled on E3, S3, H3, S2×R, H2×R, Nil, Sol, ÈSL2R.

The work of Perelman, Casson-Manning, Epstein

et. al., Hodgson-Weeks, Jaco-Oertel, Haken-Hem-

ion-Matveev, Casson, Rubinstein-Thompson, and

others gives

Thm. There is an algorithm to determine if two

compact 3-manifolds are homeomorphic.

Other directions: Heegaard Floer homology, quan-

tum invariants. . .
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How hard are these questions?

[Agol-Hass-Thurston 2002] The following is NP-

complete:

Q: Given a manifold M, a knot K in T 1, and g ∈
N, is there a surface Σ ⊂ M with boundary K and

genus ≤ g?

[Casson, Schleimer, Ivanov 2004] Recognizing the

3-sphere is in NP.
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Normal surfaces meet each tetrahedra in a stan-

dard way:

and correspond to certain lattice points in a finite

polyhedral cone in R7t where t = #T :



Normal surfaces meet each tetrahedra in a stan-

dard way:

and correspond to certain lattice points in a finite

polyhedral cone in R7t where t = #T :

Meta Thm. In an interesting class of surfaces,

there is one which is normal. Moreover, one lies

on a vertex ray of the cone.

E.g. The class of minimal genus surfaces whose

boundary is a given knot.

Problem: the dimension grows linearly with t,
and moreover there can be exponentially many

vertex rays. In practice, limited to t < 40.

Worse, sometimes have a second step examin-

ing each M \ Σ and looking for surfaces there,

and that new manifold may be much more com-

plicated than M itself.
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Thm. (Dunfield-Ramakrishnan 2007) There is

a closed hyperbolic 3-manifold M of arithmetic

type, with an infinite family of finite covers {Mn}
of degree dn, where the number νn of fibered

faces of the Thurston norm ball of Mn satisfies

νn ≥ exp

(
0.3

logdn
log logdn

)
as dn →∞.

To prove this, we needed to compute the Thurston

norm for a manifold with #T ≈ 130, and more-

over show that it fibers over the circle!
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Practical Trick 1: Finding the simplest surface

representing some φ ∈ H1(M ;Z) � H2(M ;Z).

Use a triangulation with only one vertex (cf. Cas-

son, Jaco-Rubinstein). Theφ comes from a unique

1-cocycle, which realizes φ as a piecewise affine

map M → S1.
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Power of randomization: Trying several different

triangulations usually yields the minimal genus

surface.

Lower bounds on the genus come from (twisted)

Alexander polynomials.

Practical Trick 2: Proving that N = M \Σ is Σ× I.

Start with a presentation for π1(N) coming from

a triangulation, and then simplify that it using

Tietze transformations. With luck (i.e. random-

ization), one gets a one-relator presentation of a

surface group. This gives N � Σ× I by [Stallings

1960].

To see that N 6� Σ×I, try Alexander polynomials.

Current work: Can this work for other problems,

e.g. finding incompressible surfaces?
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Rank vs. genus (with Helen Wong)

A closed M3 can always be constructed as

Consider

rank(M) =min genus of a Heegaard splitting

genus(M) =min size of a gen set of π1M

Clearly have rank(M) ≤ genus(M).

Q. Does rank(M) = genus(M) for all hyperbolic

3-manifolds?

[Boileau-Zieschang 1984] There are Seifert fibered

spaces with rank(M) ≠ genus(M).

Further graph manifold examples found by Wei-

dmann and Schultens.
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Searching for an example.

Computability in theory for M3 hyperbolic:

• Rank: Yes [Kapovich-Weidmann 2004]

• Genus: Unknown, likely yes. Rubinstein and

Stocking showed that (many) Heegaard sur-

faces can be made almost normal, but there

are infinitely many candidates surfaces.

[Lackenby 2008] WhenM has cusps, can com-

pute the genus by using the right triangula-

tion.
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Computability in practice.

• Rank: Occasionally. Can search for smaller

generating sets via Todd-Coxeter coset enu-

meration. Lower bounds are hard to come

by, except for the rank of H1(M ;Z).

• Genus: Sometimes. Start with a presenta-

tion of π1(M) coming from a triangulation,

then simplify via Tietze transformations. The

result inevitably comes from a Heegaard split-

ting of M. Using randomization, can get

a good idea of what the genus should be.

Lower bounds, other than the rank, are few,

e.g. quantum invariants.

Note: Quantum invariants can be used to reprove

the examples of Boileau-Zieschang [Wong 2007].
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So far, we don’t even have any candidate hyper-

bolic examples, even though our methods quickly

find many of the known non-hyperbolic exam-

ples.

We think we’ve found a new non-hyperbolic ex-

ample:

We know that rank(M) = 3 and strongly suspect

that rank(M) = 4.
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