Floer homology, orderable groups, and taut foliations of hyperbolic 3-manifolds:

An experimental study

Nathan M. Dunfield (University of Illinois)

These slides already posted at:

http://dunfield.info/slides/BIRS16.pdf

$H_*(Y;\mathbb{Q}) \cong H_*(S^3;\mathbb{Q}).$
Conj: For an irreducible QHS Y, TFAE

orderable groups,
and taut foliations
of hyperbolic 3-manifolds:
An experimental study

(a) $\widehat{HF}(Y)$ is non-minimal.

(b) $\pi_1(Y)$ is left-orderable.

(c) Y has a co-orient, taut foliation.

(University of Illinois)

These slides already posted at: http://dunfield.info/slides/BIRS16.pdf

Nathan M. Dunfield

Floer homology,

Heegaard Floer: An \mathbb{F}_2 -vector space $\widehat{HF}(Y)$ where

$$\dim \widehat{HF}(Y) \ge |H_1(Y; \mathbb{Z})|$$

When equal, Y is an L-space.

L-spaces: Spherical manifolds, e.g. L(p,q).

Non-L-spaces: 1/n-Dehn surgery on a knot in S^3 other than the unknot or the trefoil.

 Y^3 : closed oriented irreducible with $H_*(Y;\mathbb{Q}) \cong H_*(S^3;\mathbb{Q})$.

Conj: For an irreducible $\mathbb{Q}HS\ Y$, TFAE:

- (a) $\widehat{HF}(Y)$ is non-minimal.
- (b) $\pi_1(Y)$ is left-orderable.
- (c) Y has a co-orient. taut foliation.

Left-order: A total order on a group G where g < h implies $f \cdot g < f \cdot h$ for all $f, g, h \in G$.

For countable G, equivalent to $G \hookrightarrow \text{Homeo}^+(\mathbb{R})$.

Orderable: $(\mathbb{R},+)$, $(\mathbb{Z},+)$, F_n , B_n . **Non-orderable:** finite groups, $\mathrm{SL}_n\mathbb{Z}$

for $n \ge 2$.

 Y^3 is called *orderable* if $\pi_1(Y)$ is left-orderable.

Heegaard Floer: An \mathbb{F}_2 -vector space $\widehat{HF}(Y)$ where

$$\dim \widehat{HF}(Y) \ge |H_1(Y; \mathbb{Z})|$$

When equal, Y is an L-space.

L-spaces: Spherical manifolds, e.g. L(p,q).

Non-L-spaces: 1/n-Dehn surgery on a knot in S^3 other than the unknot or the trefoil.

Taut foliation: A decomposition \mathscr{F} of Y into 2-dim'l leaves where:

- (a) Smoothness: $C^{1,0}$
- (b) Co-orientable.
- (c) There exists a loop transverse to ## meeting every leaf.

If Y has a taut foliation then $\widetilde{Y} \cong \mathbb{R}^3$ and so $\pi_1(Y)$ is infinite.

Left-order: A total order on a group G where g < h implies $f \cdot g < f \cdot h$ for all $f, g, h \in G$.

For countable G, equivalent to $G \hookrightarrow Homeo^+(\mathbb{R})$.

Orderable: $(\mathbb{R},+)$, $(\mathbb{Z},+)$, F_n , B_n .

Non-orderable: finite groups, $SL_n\mathbb{Z}$ for $n \ge 2$.

 Y^3 is called *orderable* if $\pi_1(Y)$ is left-orderable.

Evidence for the conjecture:

[Hanselman-Rasmussen²-Watson, Boyer-Clay 2015] True for all graph manifolds.

[Li-Roberts 2012, Culler-D. 2015] Suppose $K \subset S^3$ where $\Delta_K(t)$ has a simple root on the unit circle and whose complement is lean. Then there exists $\epsilon > 0$ so that the conjecture holds for the r Dehn surgery on K whenever $r \in (-\epsilon, \epsilon)$.

[Gordon-Lidman, . . .]

A few rat'l homology 3-spheres:

265,503 hyperbolic QHSs which are 2-fold branched covers over non-alt links in S^3 with ≤ 15 crossings.

H-W census has 10,903 QHSs.

Evidence for the conjecture:

[Hanselman-Rasmussen²-Watson, Boyer-Clay 2015] True for all graph manifolds.

[Li-Roberts 2012, Culler-D. 2015] Suppose $K \subset S^3$ where $\Delta_K(t)$ has a simple root on the unit circle and whose complement is lean. Then there exists $\epsilon > 0$ so that the conjecture holds for the r Dehn surgery on K whenever $r \in (-\epsilon, \epsilon)$.

[Gordon-Lidman, . . .]

Sample: 265,503 hyperbolic QHSs. Conjecture holds so far!

Finding 63,977 taut folations.

 \mathcal{T} a 1-vertex triangulation of Y.

Def. A laminar orientation of \mathcal{T} is:

- (a) An orientation of the edges where every face is acyclic.
- (b) Every edge is adjacent to a tet in which it is not very long.
- (c) The relation on faces has one equiv class.

[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.

Finding 63,977 taut folations.

 \mathcal{T} a 1-vertex triangulation of Y.

Def. A laminar orientation of \mathcal{T} is:

- (a) An orientation of the edges where every face is acyclic.
- (b) Every edge is adjacent to a tet in which it is not very long.
- (c) The relation on faces has one equiv class.

[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.

The pattern: Large $|H_1(Y)|$ increases the odds that Y is an L-space.

Computing \widehat{HF} : Used [Zhan] which implements the bordered Heegaard Floer homology of [LOT].

Nonordering $\pi_1(Y)$: Try to order the ball in the Cayley graph of radius 3-5 in a presentation with many generators. Solved word problem

using matrix multiplication.

2.13 million $PSL_2\mathbb{R}$ reps.

Ordering $\pi_1(Y)$: Find reps to $\overline{PSL_2}\mathbb{R}$. Reps to $PSL_2\mathbb{R}$ are plentiful (mean 8 per manifold) but the the Euler class in $H^2(Y;\mathbb{Z})$ must vanish to lift, so only get 7,382 orderable manifolds from

People Who Watched This Talk Also Read

M. Culler and N. Dunfield,
Orderability and Dehn filling,
preprint 2016, 49 pages

preprint 2016, 49 pages. arXiv:1602.03793

Computing \widehat{HF} : Used [Zhan] which implements the bordered Heegaard Floer homology of [LOT].

Nonordering $\pi_1(Y)$: Try to order the ball in the Cayley graph of radius 3-5

in a presentation with many generators. Solved word problem using matrix multiplication.

Ordering $\pi_1(Y)$: Find reps to $\overline{PSL_2}\mathbb{R}$. Reps to $PSL_2\mathbb{R}$ are plentiful (mean 8 per manifold) but the the Euler class in $H^2(Y;\mathbb{Z})$ must vanish to lift, so only get 7,382 orderable manifolds from 2.13 million $PSL_2\mathbb{R}$ reps.