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Y3: closed oriented irreducible with

H∗(Y;Q)∼=H∗(S3;Q).

Conj: For an irreducible QHS Y, TFAE:

(a) ĤF(Y) is non-minimal.

(b) π1(Y) is left-orderable.

(c) Y has a co-orient. taut foliation.
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Heegaard Floer: An F2-vector

space ĤF(Y) where

dimĤF(Y)≥
∣∣H1(Y;Z)

∣∣

When equal, Y is an L-space.

L-spaces: Spherical manifolds,

e.g. L(p,q).

Non-L-spaces: 1/n-Dehn surgery

on a knot in S3 other than the

unknot or the trefoil.
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Left-order: A total order on a group

G where g<h implies f ·g< f ·h for

all f ,g,h ∈G.

For countable G, equivalent to

G ,→Homeo+(R).

Orderable: (R,+), (Z,+), Fn, Bn.

Non-orderable: finite groups, SLnZ

for n≥2.

Y3 is called orderable if π1(Y) is

left-orderable.
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Taut foliation: A decomposition F

of Y into 2-dim’l leaves where:

(a) Smoothness: C1,0

(b) Co-orientable.

(c) There exists a loop transverse to

F meeting every leaf.

If Y has a taut foliation then Ỹ ∼=R3

and so π1(Y) is infinite.
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Y has a taut
foliation F

Y is orderable
⇐⇒

π1(Y) acts on R

Y is not
an L-space

All actions are nontrivial
and orientation preserving.

[OS]
and

[B, KR]

Conjecture of [BGW]
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Y has a taut
foliation F

Y is orderable
⇐⇒

π1(Y) acts on R

Y is not
an L-space

π1(Y) acts
on S1

π1(Y) acts on a simply
connected 1-manifold

(possibly non-Hausdorff)

Thurston’s universal circle [CD]

[OS]
and

[B, KR]

Leaf space of F̃ in Ỹ

Conjecture of [BGW]
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Evidence for the conjecture:

[Hanselman-Rasmussen2-Watson,

Boyer-Clay 2015] True for all graph

manifolds.

[Li-Roberts 2012, Culler-D. 2015]

Suppose K ⊂S3 where ∆K(t) has a

simple root on the unit circle and

whose complement is lean. Then

there exists ε>0 so that the

conjecture holds for the r Dehn

surgery on K whenever r ∈ (−ε,ε).

[Gordon-Lidman, . . . ]
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A few rat’l homology 3-spheres:

265,503 hyperbolic QHSs which are

2-fold branched covers over non-alt

links in S3 with ≤15 crossings.
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Sample: 265,503 hyperbolic QHSs. Conjecture holds so far!

nonorderable ≥ 44%

L-spaces (73%)
non-L-sps (27%)

taut ≥ 24%

order
≥ 3%
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Finding 63,977 taut folations.

T a 1-vertex triangulation of Y.

Def. A laminar orientation of T is:

(a) An orientation of the edges where

every face is acyclic.

(b) Every edge is adjacent to a tet in

which it is not very long.

(c) The relation on faces has one

equiv class.

[D. 2015] If Y has a tri with a laminar

orient, then Y has a taut foliation.
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The pattern: Large
∣∣H1(Y)

∣∣ increases the odds that Y is an L-space.
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Computing ĤF: Used [Zhan] which

implements the bordered Heegaard

Floer homology of [LOT].

Nonordering π1(Y): Try to order the

ball in the Cayley graph of radius 3-5

in a presentation with many

generators. Solved word problem

using matrix multiplication.

Ordering π1(Y): Find reps to âPSL2R.

Reps to PSL2R are plentiful (mean 8

per manifold) but the the Euler class

in H2(Y;Z) must vanish to lift, so only

get 7,382 orderable manifolds from

2.13 million PSL2R reps.
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