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Throughout: M3 is a cpt orient
irreducible with every closed
F2 ⊂M orient (e.g. H2(M;F2)=0).

Closed conn embedded F2 ⊂M is
incompressible when F 6=S2 and
π1F→π1M is injective; if F is also
not parallel into ∂M, it is essential.

Goal: Count (closed) essential
surfaces in M, up to isotopy.

T3: all essential surfaces are tori,
infinitely many.

|π1M| <∞: no essential surfaces.

[Hatcher-Thurston 1985] 2-bridge
knot exterior has no ess. surfaces.



M3 is atoroidal when there are no
ess. tori. For atoroidal M, this is
always finite:

aM(g)=#
{
genus g ess. surf, mod iso

}

For the exterior
M of 11n34:

g aM g aM g aM
1 0 7 87 13 602
2 6 8 208 14 1,168
3 9 9 220 15 1,039
4 24 10 366 16 1,498
5 37 11 386 17 1,564
6 86 12 722 18 2,514

...
50 56,892

100 444,038
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aM(g)=#
{
genus g ess. surf, mod iso

}
bM(−n)=#

{
ess. surf with χ=−n

mod isotopy

}
For M= E11n34, we show

bM(−2n)= 2

3
n3+9

4
n2+7

3
n+7+ (−1)n

8

Thm [DGR] For atoroidal M3, the
generating function

∞∑
n=1

bM(−2n)xn = P(x)

Q(x)

where P,Q ∈Q[x] and Q is a product
of cyclotomics.

Algorithm [DGR] Can find P, Q,
and isotopy reps for fixed χ.



Normal surfaces meet
each tetrahedra in a
standard way:

and correspond to lattice points in
a finite polyhedral cone PT in R7t

where t =#T:

Good: Any essential F can be
isotoped to be normal.
Bad: Resulting normal surface is
far from unique.



weight: wt(F)=#(F∩T1)

lw-surface: an essential normal
surface that is least weight in its
isotopy class.

[Tollefson 90s, Oertel 80s]
Every lw-surface lies on a lw-face
C⊂ PT , one where every lattice
point in C is a lw-surface. Isotopies
between lw-surfaces can be
understood.

[Ehrhart 60s] Counts of lattice
points in rational polyhedra are
quasipolynomial.

Thm [DGR] For atoroidal M3, the
count bM(−2n) is quasipolynomial.



Moral: Ess. surf. are lattice points
in the space ML(M) of measured
laminations [Hatcher ’90s].

Cor [DGR] The number of
ess. surfaces of χ=−2n grows like
nd−1 where d= dim(ML(M)).

[Kahn-Markovic 2012] For M3

closed hyperbolic, the number of
immersed essential genus g
surfaces grows like g2g.



Computed LWT =⋃{
C is a lw-face

}
for 59K manifolds. Some 4K with
dim(LWT)>1 giving 88 distinct BM.

K15n51747:

−3x7 +3x6 +9x5 −9x4 −9x3 +9x2 +2x

(x−1)4(x+1)3
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5

5
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K15n18579: BM(x)=
−2x6 +5x4 −4x3 −15x2 −4x

(x−1)3(x+1)3



K11n34

BM(x)=
−x5 +3x4 −2x3 +2x2 +6x

(x+1)(x−1)4



For K13n3838, LWT is conn. with
44 maximal faces, all of dim 5,
each with 5–9 vertex rays cor. to
48 distinct surfaces of genus 2–5.
Here bM(−2n) is:

7

12
n4+3n3+ 14

3
n2+3n+ 7+ (−1)n
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and aM(g) starts 12, 34, 110, 216,
532, 708, 1558, 2018, 3462, 4176,
7314, 7876, 13204, 14256, 20778,
23404, 34820, 34832, 52226,...



What about counting by
genus?

aM(g)=#
{
genus g ess. surf, mod iso

}
To compute, need to decide which
lattice points correspond to
connected surfaces.

For the 4,330 manifolds, see 94
distinct patterns for aM(g).

The sequence aM does not
determine bM or conversely.



Even for surfaces, counting
connected curves only is very
subtle [Mirzakhani]. We only have
conjectures.

Conj. For K13n586, have aM(2)=2
and aM(g)=φ(g−1) for g>2.

Conj. 54 of our 88 sequences
aM(g) have Möbius transform that
is quasipolynomial.

Asymptotics: aM(g)=
∑
k≤g

aM(k)



Conj. Either aM(g)=0 for all large
g or there exists s ∈N such that
limg→∞aM(g)/gs exists and is
positive.
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