Floer homology, orderable groups, and taut foliations of hyperbolic 3-manifolds:

An experimental study

Nathan M. Dunfield
(University of Illinois and IAS)

These slides already posted at:
http://dunfield.info/slides/IAS.pdf
Y^{3} : closed oriented irreducible with $H_{*}(Y ; \mathbb{Q}) \cong H_{*}\left(S^{3} ; \mathbb{Q}\right)$.

Conj: For an irreducible $\mathbb{Q} H S$ Y, TFAE (a) $\widehat{H F}(Y)$ is non-minimal.
(b) $\pi_{1}(Y)$ is left-orderable.
(c) Y has a co-orient. taut foliation.

Floer homology,

 orderable groups, and taut foliations of hyperbolic 3-manifolds:
An experimental study

Nathan M. Dunfield
(University of Illinois and IAS)

These slides already posted at:
http://dunfield.info/slides/IAS.pdf

Heegaard Floer: An \mathbb{F}_{2}-vector space $\widehat{H F}(Y)$ where

$$
\operatorname{dim} \widehat{H F}(Y) \geq\left|H_{1}(Y ; \mathbb{Z})\right|
$$

When equal, Y is an L-space.

L-spaces: Spherical manifolds, e.g. $L(p, q)$.

Non-L-spaces: $1 / n$-Dehn surgery on a knot in S^{3} other than the unkno or the trefoil.
Y^{3} : closed oriented irreducible with $H_{*}(Y ; \mathbb{Q}) \cong H_{*}\left(S^{3} ; \mathbb{Q}\right)$.

Conj: For an irreducible $\mathbb{Q} H S ~ Y$, TFAE:
(a) $\widehat{H F}(Y)$ is non-minimal.
(b) $\pi_{1}(Y)$ is left-orderable.
(c) Y has a co-orient. taut foliation.

Left-order: A total order on a group G where $g<h$ implies $f \cdot g<f \cdot h$ for al $f, g, h \in G$.

For countable G, equivalent to $G \hookrightarrow \operatorname{Homeo}^{+}(\mathbb{R})$.

Orderable: $(\mathbb{R},+),(\mathbb{Z},+), F_{n}$.
Non-orderable: finite groups, $\mathrm{SL}_{n} \mathbb{Z}$ for $n \geq 2$.
Y^{3} is called orderable if $\pi_{1}(Y)$ is left-orderable.

Heegaard Floer: An \mathbb{F}_{2}-vector space $\widehat{H F}(Y)$ where

$$
\operatorname{dim} \widehat{H F}(Y) \geq\left|H_{1}(Y ; \mathbb{Z})\right|
$$

When equal, Y is an L-space.

L-spaces: Spherical manifolds, e.g. $L(p, q)$.

Non-L-spaces: $1 / n$-Dehn surgery on a knot in S^{3} other than the unknot or the trefoil.

Taut foliation: A decomposition \mathscr{F} of Y into 2-dim'l leaves where:
(a) Smoothness: $C^{1,0}$
(b) Co-orientable
(c) There exists a loop transverse to \mathscr{F} meeting every leaf.

If Y has a taut foliation then $\widetilde{Y} \cong \mathbb{R}^{3}$ and so $\pi_{1}(Y)$ is infinite.

Left-order: A total order on a group G where $g<h$ implies $f \cdot g<f \cdot h$ for all $f, g, h \in G$.
For countable G, equivalent to $G \hookrightarrow \operatorname{Homeo}^{+}(\mathbb{R})$.

Orderable: $(\mathbb{R},+),(\mathbb{Z},+), F_{n}$.
Non-orderable: finite groups, $\mathrm{SL}_{n} \mathbb{Z}$ for $n \geq 2$.
Y^{3} is called orderable if $\pi_{1}(Y)$ is left-orderable.

Y non-L-space $\left\langle-\bar{c}_{0} \bar{n}_{\dot{j}}=-\right\rangle$ Yorderable

Evidence for the conjecture:

[Hanselman-Rasmussen²-Watson, Boyer-Clay 2015] True for all graph manifolds.
[Li-Roberts 2012, Culler-D. 2015]
Suppose $K \subset S^{3}$ and $\Delta_{K}(t)$ has a simple root on the unit circle whose complement is lean. Then there exists $\epsilon>0$ so that the conjecture holds for the r Dehn surgery on K whenever $r \in(-\epsilon, \epsilon)$.
[Gordon-Lidman, ...]

A few rat'l homology 3-spheres:

 265,503 hyperbolic $\mathbb{Q H S}$ which are 2-fold branched covers over non-alt links in S^{3} with ≤ 15 crossings.

```
    Injectivity radius }\quad\mu=0.
        \sigma=0.2
```


Evidence for the conjecture:

[Hanselman-Rasmussen ${ }^{2}$-Watson, Boyer-Clay 2015] True for all graph manifolds.
[Li-Roberts 2012, Culler-D. 2015] Suppose $K \subset S^{3}$ and $\Delta_{K}(t)$ has a simple root on the unit circle whose complement is lean. Then there exists $\epsilon>0$ so that the conjecture holds for the r Dehn surgery on K whenever $r \in(-\epsilon, \epsilon)$.
[Gordon-Lidman, ...]

Sample: 265,503 hyperbolic $\mathbb{Q H S s}$. Conjecture holds so far!
non-L-sps (27\%)

taut $\geq 24 \%$

L-spaces (73\%)
nonorderable $\geq 44 \%$

Finding 63,977 taut foliations.
\mathscr{T} a 1-vertex triangulation of Y. Def. A laminar orientation of \mathscr{T} is:
(a) An orientation of the edges where every face is acyclic.
(b) Every edge is adjacent to a tet in which it is not very long.
(c) The relation on faces has one equiv class.
[D. 2015] If Y has a mri with a laminar orient, then Y has a taut foliation.

(c) Rules for ~

Finding 63,977 taut folations.

\mathscr{T} a 1-vertex triangulation of Y. Def. A laminar orientation of \mathscr{T} is: (a) An orientation of the edges where every face is acyclic.
(b) Every edge is adjacent to a tet in which it is not very long.
(c) The relation on faces has one equiv class.
[D. 2015] If Y has a tri with a laminar
 orient, then Y has a taut foliation.

The pattern: Large $\left|H_{1}(Y)\right|$ increases the odds that Y is an L-space.
$\widehat{H F}(Y)$
400
350
300
250
200
150

$$
\begin{array}{llllllll}
50 & 100 & 150 & 200 & 250 & 300 & 350 & 400
\end{array}
$$ $\left|H_{1}(Y)\right|$

Computing $\widehat{H F}$: Used [Zhan] which implements the bordered Heegaard Floer homology of [LOT].

Nonordering $\pi_{1}(Y)$: Try to order the ball in the Cayley graph of radius 3-5 in a presentation with many generators. Solved word problem using matrix multiplication.

Ordering $\pi_{1}(Y)$: Find reps to $\overline{\mathrm{PSL}_{2} \mathbb{R}}$. Reps to $\mathrm{PSL}_{2} \mathbb{R}$ are plentiful (mean 8 per manifold) but the the Euler class in $H^{2}(Y ; \mathbb{Z})$ must vanish to lift, so only get 7,382 orderable manifolds from
2.13 million PSL $_{2} \mathbb{R}$ reps.

