Floer homology, orderable groups, and taut foliations of hyperbolic 3-manifolds:

An experimental study

Nathan M. Dunfield
(University of Illinois)

These slides already posted at:
http://dunfield.info/slides/Newt17.pdf
Y^{3} : closed oriented irreducible with $H_{*}(Y ; \mathbb{Q}) \cong H_{*}\left(S^{3} ; \mathbb{Q}\right)$.

Conj: For an irreducible $\mathbb{Q H S} Y$, TFAE:
(a) $\widehat{H F}(Y)$ is non-minimal.
(b) $\pi_{1}(Y)$ is left-orderable.
(c) Y has a co-orient. taut foliation.

Floer homology, orderable groups, and taut foliations of hyperbolic 3-manifolds:

An experimental study

Nathan M. Dunfield (University of Illinois)

These slides already posted at:
http://dunfield.info/slides/Newt17.pdf

Heegaard Floer Homology: An
\mathbb{F}_{2}-vector space $\widehat{H F}(Y)$, part of a $3+1$ dimensional (almost) TQFT.
[Kronheimer, Mrowka, Ozsváth, Szabó 2003] No Dehn surgery on a nontrivial knot in S^{3} yields $\mathbb{R} P^{3}$.

Basic fact: $\operatorname{dim} \widehat{H F}(Y) \geq\left|H_{1}(Y ; \mathbb{Z})\right|$. When equal, Y is an L-space.

L-spaces: Spherical manifolds, e.g. $L(p, q)$.

Non-L-spaces: $1 / n$-Dehn surgery
on a knot in S^{3} other than the unknot or the trefoil.
Y^{3} : closed oriented irreducible with $H_{*}(Y ; \mathbb{Q}) \cong H_{*}\left(S^{3} ; \mathbb{Q}\right)$.

Conj: For an irreducible $\mathbb{Q} H S ~ Y$, TFAE:
(a) $\widehat{H F}(Y)$ is non-minimal.
(b) $\pi_{1}(Y)$ is left-orderable.
(c) Y has a co-orient. taut foliation.

Left-order: A total order on a group G where $g<h$ implies $f \cdot g<f \cdot h$ for all $f, g, h \in G$.

Orderable: $(\mathbb{R},+),(\mathbb{Z},+), F_{n}, B_{n}$.
Non-orderable: finite groups, $\mathrm{SL}_{n} \mathbb{Z}$ for $n \geq 3$.

For countable G, equivalent to $G \hookrightarrow \operatorname{Homeo}^{+}(\mathbb{R})$.
Y^{3} is called orderable if $\pi_{1}(Y)$ is left-orderable.

Heegaard Floer Homology: An
\mathbb{F}_{2}-vector space $\widehat{H F}(Y)$, part of a $3+1$ dimensional (almost) TQFT.
[Kronheimer, Mrowka, Ozsváth, Szabó 2003] No Dehn surgery on a nontrivial knot in S^{3} yields $\mathbb{R} \mathrm{P}^{3}$.

Basic fact: $\operatorname{dim} \widehat{H F}(Y) \geq\left|H_{1}(Y ; \mathbb{Z})\right|$. When equal, Y is an L-space.

L-spaces: Spherical manifolds, e.g. $L(p, q)$.

Non-L-spaces: $1 / n$-Dehn surgery on a knot in S^{3} other than the unknot or the trefoil.

Taut foliation: A decomposition \mathscr{F} of Y into 2-dim'l leaves where:
(a) Smoothness: $C^{1,0}$
(b) Co-orientable.
(c) There exists a loop transverse to \mathscr{F} meeting every leaf.

Example: Y fibers over S^{1}.
Better example: T^{3} foliated by irrational planes.

Left-order: A total order on a group G where $g<h$ implies $f \cdot g<f \cdot h$ for all $f, g, h \in G$.

Orderable: $(\mathbb{R},+),(\mathbb{Z},+), F_{n}, B_{n}$.
Non-orderable: finite groups, $\mathrm{SL}_{n} \mathbb{Z}$ for $n \geq 3$.

For countable G, equivalent to $G \hookrightarrow \operatorname{Homeo}^{+}(\mathbb{R})$.
Y^{3} is called orderable if $\pi_{1}(Y)$ is left-orderable.

Non-examples:
While every closed 3-manifold has a foliation \mathscr{F} satisfying (a) and (b), if \mathscr{F} is taut then \widetilde{Y} is \mathbb{R}^{3} or $S^{2} \times \mathbb{R}$ and so $\pi_{1}(Y)$ is infinite.

The hyperbolic 3-manifold of least volume, the Weeks manifold, is a $\mathbb{Q} H S$ which has no taut foliations.

Taut foliation: A decomposition \mathscr{F}
of Y into 2-dim'l leaves where:
(a) Smoothness: $C^{1,0}$
(b) Co-orientable.
(c) There exists a loop transverse to \mathscr{F} meeting every leaf.

Example: Y fibers over S^{1}.
Better example: T^{3} foliated by irrational planes.

Evidence for the conjecture:

[Hanselman-Rasmussen ${ }^{2}$-Watson + Boyer-Clay 2015] True for all graph manifolds.
[Culler-D. 2016 + Roberts 2001] Suppose $K \subset S^{3}$ where $\Delta_{K}(t)$ has a simple root on the unit circle and which is lean. Then there exists $\epsilon>0$ so that the conjecture holds for the r Dehn surgery on K whenever $r \in(-\epsilon, \epsilon)$.
[Gordon-Lidman, Tran, ...]

Sample: 307,301 hyperbolic $\mathbb{Q} H S s$. Conjecture holds for $\geq 65 \%$!

Starting point:

$\mathscr{C}=\left\{\begin{array}{c}\text { hyp } \mathbb{Q} \text {-homology solid tori } \\ \text { triang by } \leq 9 \text { ideal tets } \\ {[\text { Burton 2014] }}\end{array}\right\}$

$$
\begin{gathered}
\mathscr{Y}=\left\{\begin{array}{c}
\text { hyp } \mathbb{Q} H S \text { fillings on } C \in \mathscr{C} \\
\text { with systole } \geq 0.2
\end{array}\right\} \\
\# \mathscr{C}=59,068 \quad \# \mathscr{Y}=307,301
\end{gathered}
$$

Mean $\operatorname{vol}(Y \in \mathscr{Y})$ is 6.9 with $\sigma=0.9$. 59% of $Y \in \mathscr{Y}$ have a unique Dehn filling description involving \mathscr{C}; the remaining 41\% average 3.4.

Evidence for the conjecture:

[Hanselman-Rasmussen ${ }^{2}$-Watson + Boyer-Clay 2015] True for all graph manifolds.
[Culler-D. 2016 + Roberts 2001] Suppose $K \subset S^{3}$ where $\Delta_{K}(t)$ has a simple root on the unit circle and which is lean. Then there exists $\epsilon>0$ so that the conjecture holds for the r Dehn surgery on K whenever $r \in(-\epsilon, \epsilon)$.
[Gordon-Lidman, Tran, ...]

Determining L-spaces

Alg. decidable [Sarkar-Wang 2006]
Bordered Floer [LOT, L-Zhan]

Starting point:

$$
\mathscr{C}=\left\{\begin{array}{c}
\text { hyp } \mathbb{Q} \text {-homology solid tori } \\
\text { triang by } \leq 9 \text { ideal tets } \\
{[\text { Burton } 2014]}
\end{array}\right\}
$$

A \mathbb{Q}-homology solid torus M is Floer simple if it has at least two L-space Dehn fillings.
[Rasmussen ${ }^{2}$ 2015] If you know two L-space fillings on M, then the precise set of L-space fillings can be read off from the Turaev torsion of M.
[Berge; D 2015] There are at least 54,790 finite fillings on $C \in \mathscr{C}$.

$$
\mathscr{Y}=\left\{\begin{array}{c}
\text { hyp } \mathbb{Q} H S \text { fillings on } C \in \mathscr{C} \\
\text { with systole } \geq 0.2
\end{array}\right\}
$$

$$
\# \mathscr{C}=59,068 \quad \# \mathscr{Y}=307,301
$$

Mean $\operatorname{vol}(Y \in \mathscr{Y})$ is 6.9 with $\sigma=0.9$.
59\% of $Y \in \mathscr{Y}$ have a unique Dehn filling description involving \mathscr{C}; the remaining 41\% average 3.4.

$\mathscr{Y}=307,301$				$\mathbb{Q H S s}$	$\mathscr{C}=59,068 \mathbb{Q} H S T s$			
L-sp	non-L	L-sp?	F-simp	non-F	simp?			
0	0	100%	0	0	100%	init state		

$\mathscr{Y}=307,301$								$\mathbb{Q H S s}$	$\mathscr{C}=59,068 \mathbb{Q H S T s}$			
L-sp	non-L	L-sp?	F-simp	non-F	simp?							
0	0	100%	0	0	100%	init state						
0	0	100%	0	13%	87%	Turaev obstr [RR]						

$\mathscr{Y}=307,301$								$\mathbb{Q H S s}$	$\mathscr{C}=59,068 \mathbb{Q} H S T s$			
L-sp	non-L	L-sp?	F-simp	non-F	simp?							
0	0	100%	0	0	100%	init state						
0	0	100%	0	13%	87%	Turaev obstr [RR]						
0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite						

$\mathscr{Y}=307,301$									$\mathbb{Q H S s}$	$\mathscr{C}=59,068 \mathbb{Q} H S T s$			
L-sp	non-L	L-sp?	F-simp	non-F	simp?								
0	0	100%	0	0	100%	init state							
0	0	100%	0	13%	87%	Turaev obstr [RR]							
0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite							
0	32%	68%	20%	13%	67%	2 finite fillings							

$\mathscr{Y}=307,301$ QHSs			$\mathscr{C}=59,068$ QHSTs			
L-sp	non-L	L-sp?	F-simp	non-F	simp?	
0	0	100\%	0	0	100\%	init state
0	0	100\%	0	13\%	87\%	Turaev obstr [RR]
0	32\%	68\%	0	13\%	87\%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
0	32\%	68\%	20\%	13\%	67\%	2 finite fillings
8\%	33\%	59\%	20\%	13\%	67\%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]

$\mathscr{Y}=307,301$									$\mathbb{Q H S s}$	$=59,068 \mathbb{Q H S T s}$			
L-sp	non-L	L-sp?	F-simp	non-F	simp?								
0	0	100%	0	0	100%	init state							
0	0	100%	0	13%	87%	Turaev obstr [RR]							
0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite							
0	32%	68%	20%	13%	67%	2 finite fillings							
8%	33%	59%	20%	13%	67%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]							
8%	33%	59%	45%	13%	42%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def							

$\mathscr{Y}=307,301$						
$\mathbb{Q} H S s$	$\mathscr{C}=59,068 \mathbb{Q} H S T s$					
L-sp	non-L	L-sp?	F-simp	non-F	simp?	
0	0	100%	0	0	100%	init state
0	0	100%	0	13%	87%	Turaev obstr [RR]
0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
0	32%	68%	20%	13%	67%	2 finite fillings
8%	33%	59%	20%	13%	67%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
8%	33%	59%	45%	13%	42%	$\mathscr{Y}=\mathscr{C}$ via def
40%	46%	14%	45%	13%	42%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]

$\mathscr{Y}=307,301$										$\mathbb{Q H S s}$	$\mathscr{C}=59,068 \mathbb{Q} H S T s$			
L-sp	non-L	L-sp?	F-simp	non-F	simp?									
0	0	100%	0	0	100%	init state								
0	0	100%	0	13%	87%	Turaev obstr [RR]								
0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite								
0	32%	68%	20%	13%	67%	2 finite fillings								
8%	33%	59%	20%	13%	67%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]								
8%	33%	59%	45%	13%	42%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def								
40%	46%	14%	45%	13%	42%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]								
40%	46%	14%	51%	13%	36%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def								

$\mathscr{Y}=307,301$					$\mathbb{Q} H S s$	$=59,068 \mathbb{Q} H S T s$
L-sp	non-L	L-sp?	F-simp	non-F	simp?	
0	0	100%	0	0	100%	init state
0	0	100%	0	13%	87%	Turaev obstr [RR]
0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
0	32%	68%	20%	13%	67%	2 finite fillings
8%	33%	59%	20%	13%	67%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
8%	33%	59%	45%	13%	42%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
40%	46%	14%	45%	13%	42%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
40%	46%	14%	51%	13%	36%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
47%	51%	2%	51%	13%	36%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]

$\mathscr{Y}=307,301 \mathbb{Q H S s}$			$\mathscr{C}=59,068$ QHSTs			
L-sp	non-L	L-sp?	F-simp	non-F	simp?	
0	0	100\%	0	0	100\%	init state
0	0	100\%	0	13\%	87\%	Turaev obstr [RR]
0	32\%	68\%	0	13\%	87\%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
0	32\%	68\%	20\%	13\%	67\%	2 finite fillings
8\%	33\%	59\%	20\%	13\%	67\%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
8\%	33\%	59\%	45\%	13\%	42\%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
40\%	46\%	14\%	45\%	13\%	42\%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
40\%	46\%	14\%	51\%	13\%	36\%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
47\%	51\%	2\%	51\%	13\%	36\%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
47\%	51\%	2\%	51\%	13\%	36\%	final fixed point

$\mathscr{y}=307,301$					$\mathscr{Q} H S s$	$=59,068 \mathbb{Q} H S T s$
L-sp	non-L	L-sp?	F-simp	non-F	simp?	
0	0	100%	0	0	100%	init state
0	0	100%	0	13%	87%	Turaev obstr [RR]
0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
0	32%	68%	20%	13%	67%	2 finite fillings
8%	33%	59%	20%	13%	67%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
8%	33%	59%	45%	13%	42%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
40%	46%	14%	45%	13%	42%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
40%	46%	14%	51%	13%	36%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
47%	51%	2%	51%	13%	36%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
47%	51%	2%	51%	13%	36%	final fixed point
47%	53%	0%	51%	14%	35%	foliations + crank

(*) Here 0\% is really 518 manifolds, or 0.17\%.

Finding 143,516 taut folations.
\mathscr{T} a 1-vertex triangulation of Y.
Def. A laminar orientation of \mathscr{T} is:
(a) An orientation of the edges where every face is acyclic.
(b) Every edge is adjacent to a tet in which it is not very long.
(c) The relation on faces has one equiv class.
[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.

(a)

verylong.
(c) Rules for ~

Finding 143,516 taut folations.
\mathscr{T} a 1-vertex triangulation of Y.
Def. A laminar orientation of \mathscr{T} is:
(a) An orientation of the edges where every face is acyclic.
(b) Every edge is adjacent to a tet in which it is not very long.
(c) The relation on faces has one equiv class.
[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.

Finding 143,516 taut folations.
\mathscr{T} a 1-vertex triangulation of Y.
Def. A laminar orientation of \mathscr{T} is:
(a) An orientation of the edges where every face is acyclic.
(b) Every edge is adjacent to a tet in which it is not very long.
(c) The relation on faces has one equiv class.
[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.

[D. 2016] If M has an ideal tri with a persistent lam orient, then all but at most one filling has a taut fol.

Showing orderability:

(a) Find a taut foliation with Euler class 0 . The action of $\pi_{1}(Y)$ on the universal circle then lifts to an action on \mathbb{R}. Works for 66,564 manifolds (22\%).
(b) Find reps to $\widehat{\mathrm{PSL}_{2} \mathbb{R}}$. Reps to $\mathrm{SL}_{2} \mathbb{R}$ are plentiful (mean 8 per mfld) but the Euler class in $H^{2}(Y ; \mathbb{Z})$ must vanish. Works for 48,965 manifolds (16\%) from 1.8 million $\mathrm{SL}_{2} \mathbb{R}$ reps.

Finding 143,516 taut folations.

\mathscr{T} a 1-vertex triangulation of Y.
Def. A laminar orientation of \mathscr{T} is:
(a) An orientation of the edges where every face is acyclic.
(b) Every edge is adjacent to a tet in which it is not very long.
(c) The relation on faces has one equiv class.
[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.
[D. 2016] If M has an ideal tri with a persistent lam orient, then all but at most one filling has a taut fol.

Showing orderability:

(a) Find a taut foliation with Euler class 0 . The action of $\pi_{1}(Y)$ on the universal circle then lifts to an action on \mathbb{R}. Works for 66,564 manifolds (22\%).
(b) Find reps to $\widehat{\mathrm{PSL}_{2} \mathbb{R}}$. Reps to $\mathrm{SL}_{2} \mathbb{R}$ are plentiful (mean 8 per mfld) but the Euler class in $H^{2}(Y ; \mathbb{Z})$ must vanish. Works for 48,965 manifolds (16\%) from 1.8 million $\mathrm{SL}_{2} \mathbb{R}$ reps.

Note: Consist with prob Euler $=0$ roughly $2 /\left(\# H^{2}(Y)\right)$ for non-L-spaces.

Finding 143,516 taut folations.

\mathscr{T} a 1-vertex triangulation of Y.
Def. A laminar orientation of \mathscr{T} is:
(a) An orientation of the edges where every face is acyclic.
(b) Every edge is adjacent to a tet in which it is not very long.
(c) The relation on faces has one equiv class.
[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.
[D. 2016] If M has an ideal tri with a persistent lam orient, then all but at most one filling has a taut fol.

Showing orderability:

(a) Find a taut foliation with Euler
class 0 . The action of $\pi_{1}(Y)$ on the universal circle then lifts to an action on \mathbb{R}. Works for 66,564 manifolds (22\%).
(b) Find reps to $\widehat{\mathrm{PSL}_{2} \mathbb{R}}$. Reps to $\mathrm{SL}_{2} \mathbb{R}$ are plentiful (mean 8 per mfld) but the Euler class in $H^{2}(Y ; \mathbb{Z})$ must vanish. Works for 48,965 manifolds (16\%) from 1.8 million $\mathrm{SL}_{2} \mathbb{R}$ reps.

Note: Consist with prob Euler $=0$ roughly $2 /\left(\# H^{2}(Y)\right)$ for non-L-spaces.
If same held for L-spaces, would expect 10,100 counterexamples from (b). Significant with $p=10^{-4,300}$.

Finding 143,516 taut folations.
\mathscr{T} a 1-vertex triangulation of Y.
Def. A laminar orientation of \mathscr{T} is:
(a) An orientation of the edges where every face is acyclic.
(b) Every edge is adjacent to a tet in which it is not very long.
(c) The relation on faces has one equiv class.
[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.
[D. 2016] If M has an ideal tri with a persistent lam orient, then all but at most one filling has a taut fol.

Showing not orderable: Try to

order the ball in the Cayley graph of radius 3-5 in a presentation with many generators. Need fast solution to word problem: used floating-point matrix multiplication. (Discreteness is key!)

Rigorous proof:

Verified holonomy computations, a la [HIKMOT], to check that 5.8 million words are $=1$.

Some 1Gb of "nonordering proof trees".

Showing orderability:

(a) Find a taut foliation with Euler class 0 . The action of $\pi_{1}(Y)$ on the universal circle then lifts to an action on \mathbb{R}. Works for 66,564 manifolds (22\%).
(b) Find reps to $\overline{\mathrm{PSL}_{2} \mathbb{R}}$. Reps to $\mathrm{SL}_{2} \mathbb{R}$ are plentiful (mean 8 per mfld) but the Euler class in $H^{2}(Y ; \mathbb{Z})$ must vanish. Works for 48,965 manifolds (16\%) from 1.8 million $\mathrm{SL}_{2} \mathbb{R}$ reps.

Note: Consist with prob Euler $=0$ roughly $2 /\left(\# H^{2}(Y)\right)$ for non-L-spaces.

If same held for L-spaces, would expect 10,100 counterexamples from (b). Significant with $p=10^{-4,300}$.

The pattern: Large $\left|H_{1}(Y)\right|$ increases the odds that Y is an L-space.

