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Y3: closed oriented irreducible with

H∗(Y;Q)∼=H∗(S3;Q).

Conj: For an irreducible QHS Y, TFAE:

(a) ĤF(Y) is non-minimal.

(b) π1(Y) is left-orderable.

(c) Y has a co-orient. taut foliation.
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Heegaard Floer Homology: An

F2-vector space ĤF(Y), part of a 3+1

dimensional (almost) TQFT.

[Kronheimer, Mrowka, Ozsváth,

Szabó 2003] No Dehn surgery on a

nontrivial knot in S3 yields RP3.

Basic fact: dimĤF(Y)≥
∣∣H1(Y;Z)

∣∣.
When equal, Y is an L-space.

L-spaces: Spherical manifolds,

e.g. L(p,q).

Non-L-spaces: 1/n-Dehn surgery

on a knot in S3 other than the

unknot or the trefoil.
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Left-order: A total order on a group

G where g<h implies f ·g< f ·h for

all f ,g,h ∈G.

Orderable: (R,+), (Z,+), Fn, Bn.

Non-orderable: finite groups, SLnZ

for n≥3.

For countable G, equivalent to

G ,→Homeo+(R).

Y3 is called orderable if π1(Y) is

left-orderable.
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F2-vector space ĤF(Y), part of a 3+1

dimensional (almost) TQFT.

[Kronheimer, Mrowka, Ozsváth,

Szabó 2003] No Dehn surgery on a

nontrivial knot in S3 yields RP3.

Basic fact: dimĤF(Y)≥
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Taut foliation: A decomposition F

of Y into 2-dim’l leaves where:

(a) Smoothness: C1,0

(b) Co-orientable.

(c) There exists a loop transverse to

F meeting every leaf.

Example: Y fibers over S1.

Better example: T3 foliated by

irrational planes.
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Non-examples:

While every closed 3-manifold has a

foliation F satisfying (a) and (b), if

F is taut then Ỹ is R3 or S2×R
and so π1(Y) is infinite.

The hyperbolic 3-manifold of least

volume, the Weeks manifold, is a

QHS which has no taut foliations.
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(b) Co-orientable.

(c) There exists a loop transverse to

F meeting every leaf.

Example: Y fibers over S1.
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Y has a taut
foliation F

Y is orderable
⇐⇒

π1(Y) acts on R

Y is not
an L-space

All actions are nontrivial
and orientation preserving.

[OS]
and

[B, KR]

Conjecture of [BGW]
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Y has a taut
foliation F

Y is orderable
⇐⇒

π1(Y) acts on R

Y is not
an L-space

π1(Y) acts
on S1

π1(Y) acts on a simply
connected 1-manifold

(possibly non-Hausdorff)

Thurston’s universal circle [CD]

[OS]
and

[B, KR]

Leaf space of F̃ in Ỹ

Conjecture of [BGW]
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Evidence for the conjecture:

[Hanselman-Rasmussen2-Watson +

Boyer-Clay 2015] True for all graph

manifolds.

[Culler-D. 2016 + Roberts 2001]

Suppose K ⊂S3 where ∆K(t) has a

simple root on the unit circle and

which is lean. Then there exists ε>0

so that the conjecture holds for the r

Dehn surgery on K whenever

r ∈ (−ε,ε).

[Gordon-Lidman, Tran, . . . ]
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Sample: 307,301 hyperbolic QHSs. Conjecture holds for ≥65%!

non-L-spaces (53%)

taut fol

(≥47%)

orderable

(≥30%)

L-spaces (47%)

not orderable (≥37%)
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Starting point:

C =





hyp Q-homology solid tori

triang by ≤9 ideal tets

[Burton 2014]





Y =
{

hyp QHS fillings on C ∈C

with systole ≥0.2

}

#C =59,068 #Y =307,301

Mean vol(Y ∈Y ) is 6.9 with σ=0.9.

59% of Y ∈Y have a unique Dehn

filling description involving C ; the

remaining 41% average 3.4.
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Determining L-spaces

Alg. decidable [Sarkar-Wang 2006]

Bordered Floer [LOT, L-Zhan]

A Q-homology solid torus M is Floer

simple if it has at least two L-space

Dehn fillings.

[Rasmussen2 2015] If you know

two L-space fillings on M, then the

precise set of L-space fillings can be

read off from the Turaev torsion of M.

[Berge; D 2015] There are at least

54,790 finite fillings on C ∈C .

Starting point:
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Y = 307,301 QHSs C = 59,068 QHSTs
L-sp non-L L-sp? F-simp non-F simp?

0 0 100% 0 0 100% init state

0 0 100% 0 13% 87% Turaev obstr [RR]
0 32% 68% 0 13% 87% Y ⇐=C via finite
0 32% 68% 20% 13% 67% 2 finite fillings

8% 33% 59% 20% 13% 67% Y ⇐=C via [RR]
8% 33% 59% 45% 13% 42% Y =⇒C via def

40% 46% 14% 45% 13% 42% Y ⇐=C via [RR]
40% 46% 14% 51% 13% 36% Y =⇒C via def
47% 51% 2% 51% 13% 36% Y ⇐=C via [RR]

47% 51% 2% 51% 13% 36% final fixed point

47% 53% 0% 51% 14% 35% foliations + crank

(*) Here 0% is really 518 manifolds, or 0.17%.
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Finding 143,516 taut folations.

T a 1-vertex triangulation of Y.

Def. A laminar orientation of T is:

(a) An orientation of the edges where

every face is acyclic.

(b) Every edge is adjacent to a tet in

which it is not very long.

(c) The relation on faces has one

equiv class.

[D. 2015] If Y has a tri with a laminar

orient, then Y has a taut foliation.

[D. 2016] If M has an ideal tri with a

persistent lam orient, then all but at

most one filling has a taut fol.
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Showing orderability:

(a) Find a taut foliation with Euler

class 0. The action of π1(Y) on the

universal circle then lifts to an action

on R. Works for 66,564 manifolds

(22%).

(b) Find reps to âPSL2R. Reps to SL2R

are plentiful (mean 8 per mfld) but

the Euler class in H2(Y;Z) must

vanish. Works for 48,965 manifolds

(16%) from 1.8 million SL2R reps.

Note: Consist with prob Euler = 0

roughly 2/(#H2(Y)) for non-L-spaces.

If same held for L-spaces, would

expect 10,100 counterexamples from

(b). Significant with p=10−4,300.
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Showing not orderable: Try to

order the ball in the Cayley graph of

radius 3-5 in a presentation with

many generators. Need fast solution

to word problem: used floating-point

matrix multiplication. (Discreteness

is key!)

Rigorous proof:

Verified holonomy computations,

a la [HIKMOT], to check that 5.8

million words are =1.

Some 1Gb of “nonordering proof

trees”.
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Then abab(aB)a(aB) ∈ P,
contradicting 1 6∈ P as
ababaBa2B=1 in G.

Then baba(bA)b(bA) ∈ P,
contradicting 1 6∈ P as
bababAb2A=1 in G.

Then BaB2a2Ba2B ∈ P,
contradicting 1 6∈ P as
BaB2a2Ba2B=1 in G.

If a ∈ P.

If B ∈ P.

If b
∈ P.

If bA ∈ P.

If a
B ∈

P.

π1(Weeks)=
〈
a,b

∣∣∣ ababaBa2B, ababAb2Ab
〉

31



The pattern: Large
∣∣H1(Y)

∣∣ increases the odds that Y is an L-space.
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