Floer homology, orderable groups, and taut foliations of hyperbolic 3-manifolds:

An experimental study

Nathan M. Dunfield (University of Illinois)

These slides already posted at:

http://dunfield.info/slides/Newt17.pdf

 Y^3 : closed oriented irreducible with $H_*(Y; \mathbb{Q}) \cong H_*(S^3; \mathbb{Q}).$

Conj: For an irreducible \mathbb{Q} HS Y, TFAE: (a) $\widehat{HF}(Y)$ is non-minimal.

(b) $\pi_1(Y)$ is left-orderable.

(c) Y has a co-orient. taut foliation.

Floer homology, orderable groups, and taut foliations of hyperbolic 3-manifolds:

An experimental study

Nathan M. Dunfield (University of Illinois)

These slides already posted at:

http://dunfield.info/slides/Newt17.pdf

Heegaard Floer Homology: An \mathbb{F}_2 -vector space $\widehat{HF}(Y)$, part of a 3 + 1 dimensional (almost) TQFT.

[Kronheimer, Mrowka, Ozsváth,

Szabó 2003] No Dehn surgery on a nontrivial knot in S^3 yields $\mathbb{R}P^3$.

Basic fact: dim $\widehat{HF}(Y) \ge |H_1(Y;\mathbb{Z})|$. When equal, Y is an *L-space*.

L-spaces: Spherical manifolds, e.g. L(p,q).

Non-L-spaces: 1/n-Dehn surgery on a knot in S^3 other than the unknot or the trefoil.

 Y^3 : closed oriented irreducible with $H_*(Y; \mathbb{Q}) \cong H_*(S^3; \mathbb{Q}).$

Conj: For an irreducible QHS Y, TFAE: (a) $\widehat{HF}(Y)$ is non-minimal. (b) $\pi_1(Y)$ is left-orderable. (c) Y has a co-orient, taut foliation. **Left-order:** A total order on a group *G* where g < h implies $f \cdot g < f \cdot h$ for all $f, g, h \in G$.

Orderable: $(\mathbb{R}, +)$, $(\mathbb{Z}, +)$, F_n , B_n .

Non-orderable: finite groups, $SL_n\mathbb{Z}$ for $n \ge 3$.

For countable G, equivalent to $G \hookrightarrow Homeo^+(\mathbb{R}).$

 Y^3 is called *orderable* if $\pi_1(Y)$ is left-orderable.

Heegaard Floer Homology: An \mathbb{F}_2 -vector space $\widehat{HF}(Y)$, part of a 3 + 1 dimensional (almost) TQFT.

[Kronheimer, Mrowka, Ozsváth, Szabó 2003] No Dehn surgery on a nontrivial knot in S^3 yields $\mathbb{R}P^3$.

Basic fact: dim $\widehat{HF}(Y) \ge |H_1(Y;\mathbb{Z})|$. When equal, Y is an *L-space*.

L-spaces: Spherical manifolds, e.g. L(p,q).

Non-L-spaces: 1/n-Dehn surgery on a knot in S^3 other than the unknot or the trefoil.

Taut foliation: A decomposition \mathscr{F} of Y into 2-dim'l leaves where:

(a) Smoothness: $C^{1,0}$

(b) Co-orientable.

(c) There exists a loop transverse to \mathscr{F} meeting every leaf.

Example: Y fibers over S^1 . Better example: T^3 foliated by

irrational planes.

Left-order: A total order on a group *G* where g < h implies $f \cdot g < f \cdot h$ for all $f, g, h \in G$.

Orderable: $(\mathbb{R}, +)$, $(\mathbb{Z}, +)$, F_n , B_n .

Non-orderable: finite groups, $SL_n\mathbb{Z}$ for $n \ge 3$.

For countable G, equivalent to $G \hookrightarrow Homeo^+(\mathbb{R}).$

 Y^3 is called *orderable* if $\pi_1(Y)$ is left-orderable.

Non-examples:

While every closed 3-manifold has a foliation \mathscr{F} satisfying (*a*) and (*b*), if \mathscr{F} is taut then \widetilde{Y} is \mathbb{R}^3 or $S^2 \times \mathbb{R}$ and so $\pi_1(Y)$ is infinite.

The hyperbolic 3-manifold of least volume, the Weeks manifold, is a QHS which has no taut foliations.

Taut foliation: A decomposition *F*

of Y into 2-dim'l leaves where:

- (a) Smoothness: $C^{1,0}$
- (b) Co-orientable.
- (c) There exists a loop transverse toℱ meeting every leaf.

Example: Y fibers over S^1 . Better example: T^3 foliated by irrational planes.

Evidence for the conjecture:

[Hanselman-Rasmussen²-Watson + Boyer-Clay 2015] True for all graph manifolds.

[Culler-D. 2016 + Roberts 2001] Suppose $K \subset S^3$ where $\Delta_K(t)$ has a simple root on the unit circle and which is lean. Then there exists $\epsilon > 0$ so that the conjecture holds for the rDehn surgery on K whenever $r \in (-\epsilon, \epsilon)$.

[Gordon-Lidman, Tran, ...]

Sample: 307,301 hyperbolic QHSs. Conjecture holds for $\ge 65\%$!

Starting point:

 $\mathscr{C} = \left\{ \begin{array}{l} \text{hyp } \mathbb{Q}\text{-homology solid tori} \\ \text{triang by } \leq 9 \text{ ideal tets} \\ \\ \text{[Burton 2014]} \end{array} \right\}$

 $\mathscr{Y} = \left\{ \begin{array}{l} \text{hyp } \mathbb{Q}\text{HS fillings on } C \in \mathscr{C} \\ \text{with systole} \ge 0.2 \end{array} \right\}$ $\#\mathscr{C} = 59,068 \qquad \#\mathscr{Y} = 307,301$

Mean vol($Y \in \mathscr{Y}$) is 6.9 with $\sigma = 0.9$.

59% of $Y \in \mathscr{Y}$ have a unique Dehn filling description involving \mathscr{C} ; the remaining 41% average 3.4.

Evidence for the conjecture:

[Hanselman-Rasmussen²-Watson + Boyer-Clay 2015] True for all graph manifolds.

[Culler-D. 2016 + Roberts 2001] Suppose $K \subset S^3$ where $\Delta_K(t)$ has a simple root on the unit circle and which is lean. Then there exists $\epsilon > 0$ so that the conjecture holds for the rDehn surgery on K whenever $r \in (-\epsilon, \epsilon)$.

[Gordon-Lidman, Tran, ...]

Determining L-spaces

Alg. decidable [Sarkar-Wang 2006] Bordered Floer [LOT, L-Zhan]

A \mathbb{Q} -homology solid torus M is **Floer simple** if it has at least two L-space Dehn fillings.

[Rasmussen² 2015] If you know two L-space fillings on *M*, then the precise set of L-space fillings can be read off from the Turaev torsion of *M*.

[Berge; D 2015] There are at least 54,790 finite fillings on $C \in \mathscr{C}$.

Starting point:

$$\mathscr{C} = \begin{cases} \text{hyp } \mathbb{Q}\text{-homology solid tori} \\ \text{triang by } \leq 9 \text{ ideal tets} \\ \text{[Burton 2014]} \end{cases}$$

$$\mathscr{Y} = \begin{cases} \text{hyp } \mathbb{Q}\text{HS fillings on } C \in \mathscr{C} \\ \text{with systole} \ge 0.2 \\ \# \mathscr{C} = 59,068 \quad \# \mathscr{Y} = 307,301 \end{cases}$$

Mean vol($Y \in \mathscr{Y}$) is 6.9 with $\sigma = 0.9$.

59% of $Y \in \mathscr{Y}$ have a unique Dehn filling description involving \mathscr{C} ; the remaining 41% average 3.4.

$\mathcal{Y} = $	𝖅 = 307,301 ℚHSs			9,068 Q		
L-sp	non-L	L-sp?	F-simp	non-F	simp?	
0	0	100%	0	0	100%	init state

	𝖅 = 307,301 ℚHSs			<i>C</i> = 5	9,068 Q		
	L-sp	non-L	L-sp?	F-simp	non-F	simp?	
-	0	0	100%	0	0	100%	init state
	0	0	100%	0	13%	87%	Turaev obstr [RR]

𝒴 = 307,301 ℚHSs			<i>C</i> = 5	9,068 Q		
L-sp	non-L	L-sp?	F-simp	non-F	simp?	
0	0	100%	0	0	100%	init state
0	0	100%	0	13%	87%	Turaev obstr [RR]
0	32%	68%	0	13%	87%	$\mathscr{Y} \longleftarrow \mathscr{C}$ via finite

	𝖅 = 307,301 ℚHSs			<i>C</i> = 5	9,068 Q		
	L-sp	non-L	L-sp?	F-simp	non-F	simp?	
-	0	0	100%	0	0	100%	init state
	0	0	100%	0	13%	87%	Turaev obstr [RR]
	0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
	0	32%	68%	20%	13%	67%	2 finite fillings

	𝖅 = 307,301 ℚHSs			ピ = 59,068 ℚHSTs			
	L-sp	non-L	L-sp?	F-simp	non-F	simp?	
-	0	0	100%	0	0	100%	init state
	0	0	100%	0	13%	87%	Turaev obstr [RR]
	0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
	0	32%	68%	20%	13%	67%	2 finite fillings
	8%	33%	59%	20%	13%	67%	$\mathscr{Y} \Leftarrow \mathscr{C}$ via [RR]

	𝖅 = 307,301 ℚHSs			<i>C</i> = 5	9,068 Q		
	L-sp	non-L	L-sp?	F-simp	non-F	simp?	
-	0	0	100%	0	0	100%	init state
	0	0	100%	0	13%	87%	Turaev obstr [RR]
	0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
	0	32%	68%	20%	13%	67%	2 finite fillings
	8%	33%	59%	20%	13%	67%	$\mathscr{Y} \Leftarrow \mathscr{C}$ via [RR]
	8%	33%	59%	45%	13%	42%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def

<i>Y</i> =	𝖅 = 307,301 ℚHSs			9,068 Q		
L-sp	non-L	L-sp?	F-simp	non-F	simp?	
0	0	100%	0	0	100%	init state
0	0	100%	0	13%	87%	Turaev obstr [RR]
0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
0	32%	68%	20%	13%	67%	2 finite fillings
8%	33%	59%	20%	13%	67%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
8%	33%	59%	45%	13%	42%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
40%	46%	14%	45%	13%	42%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]

_	𝖅 = 307,301 ℚHSs			ピ = 59,068 ℚHSTs			
	L-sp	non-L	L-sp?	F-simp	non-F	simp?	
	0	0	100%	0	0	100%	init state
	0	0	100%	0	13%	87%	Turaev obstr [RR]
	0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
	0	32%	68%	20%	13%	67%	2 finite fillings
	8%	33%	59%	20%	13%	67%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
	8%	33%	59%	45%	13%	42%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
	40%	46%	14%	45%	13%	42%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
	40%	46%	14%	51%	13%	36%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def

-	𝒴 = 307,301 ℚHSs			ピ = 59,068 ℚHSTs			
	L-sp	non-L	L-sp?	F-simp	non-F	simp?	
_	0	0	100%	0	0	100%	init state
	0	0	100%	0	13%	87%	Turaev obstr [RR]
	0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
	0	32%	68%	20%	13%	67%	2 finite fillings
	8%	33%	59%	20%	13%	67%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
	8%	33%	59%	45%	13%	42%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
	40%	46%	14%	45%	13%	42%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
	40%	46%	14%	51%	13%	36%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
	47%	51%	2%	51%	13%	36%	$\mathscr{Y} \Leftarrow \mathscr{C}$ via [RR]

<i>Y</i> =	𝖅 = 307,301 ℚHSs			9,068 Q		
L-sp	non-L	L-sp?	F-simp	non-F	simp?	
0	0	100%	0	0	100%	init state
0	0	100%	0	13%	87%	Turaev obstr [RR]
0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
0	32%	68%	20%	13%	67%	2 finite fillings
8%	33%	59%	20%	13%	67%	$\mathscr{Y} \Leftarrow \mathscr{C}$ via [RR]
8%	33%	59%	45%	13%	42%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
40%	46%	14%	45%	13%	42%	$\mathscr{Y} \Leftarrow \mathscr{C}$ via [RR]
40%	46%	14%	51%	13%	36%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
47%	51%	2%	51%	13%	36%	$\mathscr{Y} \Leftarrow \mathscr{C}$ via [RR]
47%	51%	2%	51%	13%	36%	final fixed point

<i>Y</i> =	307,301	QHSs	<i>C</i> = 5	€ = 59,068		
L-sp	non-L	L-sp?	F-simp	non-F	simp?	
0	0	100%	0	0	100%	init state
0	0	100%	0	13%	87%	Turaev obstr [RR]
0	32%	68%	0	13%	87%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via finite
0	32%	68%	20%	13%	67%	2 finite fillings
8%	33%	59%	20%	13%	67%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
8%	33%	59%	45%	13%	42%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
40%	46%	14%	45%	13%	42%	$\mathscr{Y} \Longleftarrow \mathscr{C}$ via [RR]
40%	46%	14%	51%	13%	36%	$\mathscr{Y} \Longrightarrow \mathscr{C}$ via def
47%	51%	2%	51%	13%	36%	$\mathscr{Y} \longleftarrow \mathscr{C}$ via [RR]
47%	51%	2%	51%	13%	36%	final fixed point
47%	53%	0%	51%	14%	35%	foliations + crank

(*) Here 0% is really 518 manifolds, or 0.17%.

Finding 143,516 taut folations.

 ${\mathcal T}$ a 1-vertex triangulation of Y.

Def. A laminar orientation of \mathcal{T} is:

(a) An orientation of the edges where every face is acyclic.

(b) Every edge is adjacent to a tet in which it is not very long.

(c) The relation on faces has one equiv class.

[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.

Finding 143,516 taut folations.

 $\mathcal T$ a 1-vertex triangulation of Y.

Def. A laminar orientation of \mathcal{T} is:

(a) An orientation of the edges where every face is acyclic.

(b) Every edge is adjacent to a tet in which it is not very long.

(c) The relation on faces has one equiv class.

[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.

Finding 143,516 taut folations.

 $\mathcal T$ a 1-vertex triangulation of Y.

Def. A laminar orientation of \mathcal{T} is:

(a) An orientation of the edges where every face is acyclic.

(b) Every edge is adjacent to a tet in which it is not very long.

(c) The relation on faces has one equiv class.

[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.

Showing orderability:

(a) Find a taut foliation with **Euler class 0**. The action of $\pi_1(Y)$ on the universal circle then lifts to an action on \mathbb{R} . Works for 66,564 manifolds (22%).

(b) Find reps to $\widetilde{\text{PSL}_2\mathbb{R}}$. Reps to $\text{SL}_2\mathbb{R}$ are plentiful (mean 8 per mfld) but the Euler class in $H^2(Y;\mathbb{Z})$ must vanish. Works for 48,965 manifolds (16%) from 1.8 million $\text{SL}_2\mathbb{R}$ reps.

Finding 143,516 taut folations.

 \mathcal{T} a 1-vertex triangulation of Y.

Def. A laminar orientation of \mathcal{T} is:

(a) An orientation of the edges where every face is acyclic.

(b) Every edge is adjacent to a tet in which it is not very long.

(c) The relation on faces has one equiv class.

[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.

Showing orderability:

(a) Find a taut foliation with **Euler** class **0**. The action of $\pi_1(Y)$ on the universal circle then lifts to an action on \mathbb{R} . Works for 66,564 manifolds (22%).

(b) Find reps to $\widetilde{\text{PSL}_2\mathbb{R}}$. Reps to $\text{SL}_2\mathbb{R}$ are plentiful (mean 8 per mfld) but the Euler class in $H^2(Y;\mathbb{Z})$ must vanish. Works for 48,965 manifolds (16%) from 1.8 million $\text{SL}_2\mathbb{R}$ reps.

Note: Consist with prob Euler = 0 roughly $2/(\#H^2(Y))$ for non-L-spaces.

Finding 143,516 taut folations.

 \mathcal{T} a 1-vertex triangulation of Y.

Def. A laminar orientation of \mathcal{T} is:

(a) An orientation of the edges where every face is acyclic.

(b) Every edge is adjacent to a tet in which it is not very long.

(c) The relation on faces has one equiv class.

[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.

Showing orderability:

(a) Find a taut foliation with **Euler class 0**. The action of $\pi_1(Y)$ on the universal circle then lifts to an action on \mathbb{R} . Works for 66,564 manifolds (22%).

(b) Find reps to $\widetilde{\text{PSL}_2\mathbb{R}}$. Reps to $\text{SL}_2\mathbb{R}$ are plentiful (mean 8 per mfld) but the Euler class in $H^2(Y;\mathbb{Z})$ must vanish. Works for 48,965 manifolds (16%) from 1.8 million $\text{SL}_2\mathbb{R}$ reps.

Note: Consist with prob Euler = 0 roughly $2/(\#H^2(Y))$ for non-L-spaces.

If same held for L-spaces, would expect 10,100 counterexamples from (b). Significant with $p = 10^{-4,300}$.

Finding 143,516 taut folations.

 \mathcal{T} a 1-vertex triangulation of Y.

Def. A laminar orientation of \mathcal{T} is:

(a) An orientation of the edges where every face is acyclic.

(b) Every edge is adjacent to a tet in which it is not very long.

(c) The relation on faces has one equiv class.

[D. 2015] If Y has a tri with a laminar orient, then Y has a taut foliation.

Showing not orderable: Try to order the ball in the Cayley graph of radius 3-5 in a presentation with many generators. Need fast solution to word problem: used floating-point matrix multiplication. (Discreteness is key!)

Rigorous proof:

Verified holonomy computations, a la [HIKMOT], to check that 5.8 million words are = 1.

Some 1Gb of "nonordering proof trees".

Showing orderability:

(a) Find a taut foliation with **Euler class 0**. The action of $\pi_1(Y)$ on the universal circle then lifts to an action on \mathbb{R} . Works for 66,564 manifolds (22%).

(b) Find reps to $\widehat{PSL_2\mathbb{R}}$. Reps to $SL_2\mathbb{R}$ are plentiful (mean 8 per mfld) but the Euler class in $H^2(Y;\mathbb{Z})$ must vanish. Works for 48,965 manifolds (16%) from 1.8 million $SL_2\mathbb{R}$ reps.

Note: Consist with prob Euler = 0 roughly $2/(\#H^2(Y))$ for non-L-spaces.

If same held for L-spaces, would expect 10,100 counterexamples from (b). Significant with $p = 10^{-4,300}$.

The pattern: Large $|H_1(Y)|$ *increases* the odds that Y is an L-space.

