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3-manifolds which fiber oves!:

NS AR
>

Conj. (W. Thurston) M a compact 3-manifold
whose boundary is a union of tori. WM is irre-
ducible, atoroidal, and has infinitg, thenM has
a finite cover which fibers oveés.

Main Q: How common are 3-manifolds which fib
overS!? Does a “random” 3-manifold fiber?



Tunnel-number one: M =HU (D? x |) alongy C
oH.
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Ex: Complement of a 2-bridge knot &
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Key: m(M)=(m(H) [y=1)=(ab|R=1).




Dehn-Thurston coordinates:
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Weights: a b ¢ ;

1 2 2
Twists: 63 6, 6. ; 0 1

-1
Def. Let .7 (L) be the set of tunnel number on

3-manifolds coming from non-separating simp
closed curves with DT coordinatesL.

A random tunnel number one 3-manifold of size
is a random element of (L ).

Interested in asymptotic probabilities las— .



Thm (Dunfield - D. Thurston 2005) LetM be a
tunnel number one 3-manifold chosen at randc
by picking a curve in DT coordinates of sizeL.
Then the probabillity that! fibers over the circle
goes tdd aslL. — oo,
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Mapping class group point of view

Fix generators of# 4% (0H) and a base curwg,
Apply a random sequence of generatorggo

Number of Dehn Twists
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Conj With this .# €<% notion, the probability of
fibering overSt is alsoO.



Proof ingredients:

Stallings 1962: Determining if a 3-manifold fibers
is an algebraic problem abor(M).

Ken Brown 1987: If ;g (M) = (a,b | R= 1), there
Is an algorithm to solve this algebraic problem.

Our adaptation of Brown'’s algorithm to train track
In the spirit of Agol-Hass-W. Thurston (2002). Trz
tracks labeled with “boxes”, which transform vi
splitting sequences.

A “magic” splitting sequence which guarantees i
M doesn't fiber.

Work of Kerckhoff (1985) and Mirzakhani (2003
completes the proof.



Given a generadll, does it fiber?

)

Considergp € HY(M, Z), can @ represent a fibra-
tion?

Considerg,: (M) — (St = Z.

Stallings: M irreducible. Theng can be repre-
sented by a fibration ierq. is finitely generated.



ConsiderG = (a,b | R= 1), a quotient of the free
groupF = (a, b).

UnlessR ¢ [F,F], haveH(G,Z) = Z.

Think of H1(F, R) as linear functionals on this cov
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RIift of R= b%abab—lab—1lab—1a—2.
H1(G,R) is generated by which is projection
orthogonal to the line joining the endpointskf



Brown: G = (a,b |R=1). kerg is finitely gen-
erated iff the number of global extrema@fon R
IS 2.
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R = b2abab—lab—lab—1a—2 R =Ra
infinitely gen (non-fibered) finitely gen (fiberec



ConsiderG = (a,b | R=1), whereR s chosen at
random from among all words of length

Q: What is the probability thab “fibers™?

A. Experimentally, the probability is 94% (base
onR of length 16).

Thm (DT) p_. = probability of fibering forR of
lengthL. Thenp, is bounded away frofd and1
independent ok :

0.0006< p_ < 0.975



Boxes: Fix ¢: F — Z. Letw = X1Xo---Xn be a
word inF = (a,b). The boxB(w) of w records:
e (W)
e The max and min op on a subwordg Xs - - - Xy
and whether those maxes and mins are repe

(pA W %
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Brown’s Criterion G = (ab|w=1),¢: G —
Z. Thenker is finitely generated ifB(w) is marke(
on neither the top or the bottom.

* X

B(wiws) = \ X =
B(wy) - B(wp)




Train tracks:

DN

With weights, gives a multicurve:
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Giveny C JH in DT coordinates, thely is also
carried by some standard initial train tragk
Problem: Givery carried byrg (in terms of weights
doesM fiber?



Simpler question: i/ connected? Can use trail
track splitting to answer:




To compute the element of i (H) represented
by y, label the edges of the train track by words
w and follow along like this:

Can compute related things by applying a mc
phism to these labels, e.g. the clasgofH{(H,Z).
To apply Brown'’s Criterion, we label the train trac
with the corresponding boxes.

Stability: If at some intermediate stage all the bo
are marked top and bottom th&h is not fibered.

But why do we get marked boxes in the first plac



Key Lemma: If the following magic splitting
sequence occurs, then at the last stage all boxes
marked. Hencé/ is not fibered.
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Let y be a non-separating simple closed curve
J0H carried bytg with weight< L.

Thm (DT) The probability thaMy, fibers overS
goes tdd asl. — oo,

By the key lemma, it is enough to show that tf
magic splitting sequence occurs somewhere in
splitting of (1, y) with probability— 1 asL — co.
This follows from:

Kerckhoff 1985: Suppose we don'’t require that
be connected or non-separating. Then any splitt
sequence of complete train tracks that can hapf
happens with probability~ 1 asL — .

Mirzakhani 2003: Let 2 be a closed surface o
genus2. LetC be the set of all non-separatin
simple closed curves di Then agd. — o

#{ye C | weight<L} Q4+
: —C€E—¢
#{ All multicurves w/ coor< L} 710




