Recently put on arXiv.org

N. Dunfield, *Volume change under drilling:* theory vs. experiment. Appendix to the paper of Agol, Storm, and W. Thurston, math.DG/0506338

N. Dunfield, S. Gukov, and J. Rasmussen. *The superpolynomial for knot homologies* math.GT/0505662

Does a random

tunnel-number one 3-manifold fiber over the circle?

Nathan Dunfield, Caltech joint with Dylan Thurston, Harvard

Slides available at www.its.caltech.edu/~dunfield/preprints.html

3-manifolds which fiber over S^1 :

Conj. (**W. Thurston**) M a compact 3-manifold whose boundary is a union of tori. If M is irreducible, atoroidal, and has infinite π_1 , then M has a finite cover which fibers over S^1 .

Main Q: How common are 3-manifolds which fiber over S^1 ? Does a "random" 3-manifold fiber?

Tunnel-number one: $M = H \cup (D^2 \times I)$ along $\gamma \subset \partial H$.

Ex: Complement of a 2-bridge knot in S^3

Key: $\pi_1(M) = \langle \pi_1(H) \mid \gamma = 1 \rangle = \langle a, b \mid R = 1 \rangle$.

Dehn-Thurston coordinates:

Weights: a b c ; 1 2 2 Twists: θ_a θ_b θ_c ; 0 1 -1

Def. Let $\mathcal{T}(L)$ be the set of tunnel number one 3-manifolds coming from non-separating simple closed curves with DT coordinates $\leq L$.

A random tunnel number one 3-manifold of size L is a random element of $\mathcal{T}(L)$.

Interested in asymptotic probabilities as $L \to \infty$.

Thm (Dunfield - D. Thurston 2005) Let M be a tunnel number one 3-manifold chosen at random by picking a curve in DT coordinates of size $\leq L$. Then the probability that M fibers over the circle goes to 0 as $L \to \infty$.

Mapping class group point of view

Fix generators of $\mathcal{MCG}(\partial H)$ and a base curve γ_0 . Apply a random sequence of generators to γ_0 .

Conj With this \mathcal{MCG} notion, the probability of fibering over S^1 is also 0.

Proof ingredients:

Stallings 1962: Determining if a 3-manifold fibers is an algebraic problem about $\pi_1(M)$.

Ken Brown 1987: If $\pi_1(M) = \langle a, b \mid R = 1 \rangle$, there is an algorithm to solve this algebraic problem.

Our adaptation of Brown's algorithm to train tracks, in the spirit of Agol-Hass-W. Thurston (2002). Train tracks labeled with "boxes", which transform via splitting sequences.

A "magic" splitting sequence which guarantees that *M* doesn't fiber.

Work of Kerckhoff (1985) and Mirzakhani (2003) completes the proof.

Given a general M, does it fiber?

Consider $\phi \in H^1(M, \mathbb{Z})$, can ϕ represent a fibration?

Consider ϕ_* : $\pi_1(M) \to \pi_1(S^1) = \mathbb{Z}$.

Stallings: *M* irreducible. Then ϕ can be represented by a fibration iff ker ϕ_* is finitely generated.

Consider $G = \langle a, b \mid R = 1 \rangle$, a quotient of the free group $F = \langle a, b \rangle$.

Unless $R \in [F, F]$, have $H^1(G, \mathbb{Z}) = \mathbb{Z}$.

Think of $H^1(F,\mathbb{R})$ as linear functionals on this cover:

$$\widetilde{R}$$
 lift of $R = b^2abab^{-1}ab^{-1}ab^{-1}a^{-2}$. $H^1(G,\mathbb{R})$ is generated by ϕ which is projection orthogonal to the line joining the endpoints of \widetilde{R} .

Brown: $G = \langle a, b \mid R = 1 \rangle$. ker ϕ is finitely generated iff the number of global extrema of ϕ on \widetilde{R} is 2.

$$R = b^2 abab^{-1} ab^{-1} ab^{-1} a^{-2}$$
 $R' = Ra$ infinitely gen (non-fibered) finitely gen (fibered)

Consider $G = \langle a, b \mid R = 1 \rangle$, where R is chosen at random from among all words of length L.

Q: What is the probability that G "fibers"?

A: Experimentally, the probability is 94% (based on R of length 10^8).

Thm (**DT**) $p_L = probability of fibering for <math>R$ of length L. Then p_L is bounded away from 0 and 1 independent of L:

 $0.0006 < p_L < 0.975$

Boxes: Fix $\phi : F \to \mathbb{Z}$. Let $w = x_1 x_2 \cdots x_n$ be a word in $F = \langle a, b \rangle$. The box B(w) of w records:

- $\phi(w)$
 - The max and min of ϕ on a subwords $x_1x_2 \cdots x_k$ and whether those maxes and mins are repeated.

Brown's Criterion $G = \langle a, b \mid w = 1 \rangle, \phi \colon G \to \mathbb{Z}$. Then ker ϕ is finitely generated iff B(w) is marked on neither the top or the bottom.

$$B(w_1w_2) = \\ B(w_1) \cdot B(w_2) \qquad \qquad \times \qquad = \qquad \qquad = \qquad \qquad$$

Train tracks:

With weights, gives a multicurve:

Given $\gamma \subset \partial H$ in DT coordinates, then γ is also carried by some standard initial train track τ_0 .

Problem: Given γ carried by τ_0 (in terms of weights) does M fiber?

Simpler question: is γ connected? Can use train track splitting to answer:

To compute the element w of $\pi_1(H)$ represented by γ , label the edges of the train track by words in w and follow along like this:

Can compute related things by applying a morphism to these labels, e.g. the class of γ in $H_1(H, \mathbb{Z})$. To apply Brown's Criterion, we label the train tracks with the corresponding boxes.

Stability: If at some intermediate stage all the boxes are marked top and bottom then M, is not fibered.

But why do we get marked boxes in the first place?

Key Lemma: If the following magic splitting sequence occurs, then at the last stage all boxes are marked. Hence *M* is not fibered.

Let γ be a non-separating simple closed curve on ∂H carried by τ_0 with weight $\leq L$.

Thm (DT) The probability that M_{γ} fibers over S^1 goes to 0 as $L \to \infty$.

By the key lemma, it is enough to show that the magic splitting sequence occurs somewhere in the splitting of (τ_0, γ) with probability $\to 1$ as $L \to \infty$. This follows from:

Kerckhoff 1985: Suppose we don't require that γ be connected or non-separating. Then any splitting sequence of complete train tracks that can happen, happens with probability $\to 1$ as $L \to \infty$.

Mirzakhani 2003: Let Σ be a closed surface of genus 2. Let C be the set of all non-separating simple closed curves on Σ . Then as $L \to \infty$

$$\frac{\#\{\gamma \in C \mid \text{weight} \leq L\}}{\#\{\text{All multicurves w/coor} \leq L\}} \rightarrow c \in \frac{\mathbb{Q}_+}{\pi^6}$$