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3-manifolds which fiber overS1:

Conj. (W. Thurston) M a compact 3-manifold
whose boundary is a union of tori. IfM is irre-
ducible, atoroidal, and has infiniteπ1, thenM has
a finite cover which fibers overS1.

Main Q: How common are 3-manifolds which fiber

overS1? Does a “random” 3-manifold fiber?



Tunnel-number one: M = H∪(D2×I) alongγ ⊂
∂H.

Ex: Complement of a 2-bridge knot inS3

Key: π1(M) = 〈π1(H) | γ = 1〉 = 〈a,b | R = 1〉.



Dehn-Thurston coordinates:

Weights: a b c ; 1 2 2
Twists: θa θb θc ; 0 1 -1

Def. Let T (L) be the set of tunnel number one
3-manifolds coming from non-separating simple
closed curves with DT coordinates≤ L.

A random tunnel number one 3-manifold of sizeL

is a random element ofT (L).

Interested in asymptotic probabilities asL → ∞.



Thm (Dunfield - D. Thurston 2005) Let M be a
tunnel number one 3-manifold chosen at random
by picking a curve in DT coordinates of size≤ L.
Then the probability thatM fibers over the circle
goes to0 asL → ∞.
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Mapping class group point of view

Fix generators ofMCG (∂H) and a base curveγ0.

Apply a random sequence of generators toγ0.
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Conj With this MC G notion, the probability of
fibering overS1 is also0.



Proof ingredients:

Stallings 1962: Determining if a 3-manifold fibers
is an algebraic problem aboutπ1(M).

Ken Brown 1987: If π1(M)= 〈a,b | R = 1〉, there
is an algorithm to solve this algebraic problem.

Our adaptation of Brown’s algorithm to train tracks,

in the spirit of Agol-Hass-W. Thurston (2002). Train

tracks labeled with “boxes”, which transform via

splitting sequences.

A “magic” splitting sequence which guarantees that

M doesn’t fiber.

Work of Kerckhoff (1985) and Mirzakhani (2003)

completes the proof.



Given a generalM, does it fiber?

Considerφ ∈ H1(M,Z), canφ represent a fibra-

tion?

Considerφ∗ : π1(M) → π1(S
1) = Z.

Stallings: M irreducible. Thenφ can be repre-
sented by a fibration iffkerφ∗ is finitely generated.



ConsiderG = 〈a,b | R = 1〉, a quotient of the free

groupF = 〈a,b〉.

UnlessR ∈ [F,F ], haveH1(G,Z) = Z.

Think ofH1(F,R) as linear functionals on this cover:

a b

R̃

ã

b̃

R̃ lift of R = b2abab−1ab−1ab−1a−2.

H1(G,R) is generated byφ which is projection

orthogonal to the line joining the endpoints ofR̃.



Brown: G = 〈a,b | R = 1〉. kerφ is finitely gen-
erated iff the number of global extrema ofφ on R̃

is 2.

φ φ ′

R = b2abab−1ab−1ab−1a−2 R′ = Ra

infinitely gen (non-fibered) finitely gen (fibered)



ConsiderG = 〈a,b | R = 1〉, whereR is chosen at

random from among all words of lengthL.

Q: What is the probability thatG “fibers”?

A: Experimentally, the probability is 94% (based

onR of length 108).

Thm (DT) pL = probability of fibering forR of
lengthL. ThenpL is bounded away from0 and1

independent ofL:

0.0006< pL < 0.975



Boxes: Fix φ : F → Z. Let w = x1x2 · · ·xn be a

word in F = 〈a,b〉. The boxB(w) of w records:

• φ(w)

• The max and min ofφ on a subwordsx1x2 · · ·xk

and whether those maxes and mins are repeated.

φ

0

φ(w)

w

B(w)

Brown’s Criterion G = 〈a,b | w = 1〉,φ : G →

Z. Thenkerφ is finitely generated iffB(w) is marked
on neither the top or the bottom.

× =B(w1w2) =

B(w1) ·B(w2)



Train tracks:

With weights, gives a multicurve:

3

1

2

Given γ ⊂ ∂H in DT coordinates, thenγ is also

carried by some standard initial train trackτ0.

Problem: Givenγ carried byτ0 (in terms of weights)

doesM fiber?



Simpler question: isγ connected? Can use train

track splitting to answer:



To compute the elementw of π1(H) represented

by γ , label the edges of the train track by words in

w and follow along like this:

a

b

c

d

e e

a · e c

b e ·d

Can compute related things by applying a mor-

phism to these labels, e.g. the class ofγ in H1(H,Z).

To apply Brown’s Criterion, we label the train tracks

with the corresponding boxes.

Stability: If at some intermediate stage all the boxes

are marked top and bottom thenM, is not fibered.

But why do we get marked boxes in the first place?



Key Lemma: If the following magic splitting

sequence occurs, then at the last stage all boxes are

marked. HenceM is not fibered.



Let γ be a non-separating simple closed curve on

∂H carried byτ0 with weight≤ L.

Thm (DT) The probability thatMγ fibers overS1

goes to0 asL → ∞.

By the key lemma, it is enough to show that the

magic splitting sequence occurs somewhere in the

splitting of (τ0,γ) with probability→ 1 asL → ∞.

This follows from:

Kerckhoff 1985: Suppose we don’t require thatγ
be connected or non-separating. Then any splitting
sequence of complete train tracks that can happen,
happens with probability→ 1 asL → ∞.

Mirzakhani 2003: Let Σ be a closed surface of
genus2. Let C be the set of all non-separating
simple closed curves onΣ. Then asL → ∞

#{γ ∈C | weight≤ L}
#{All multicurves w/ coor≤ L}

→ c ∈
Q+

π6


