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Setup:
e Knot: K =S - §3
e Exterior: M = §3 —]%(K)

.

A basic and fundamental invariant of K its
Alexander polynomial (192 3):

Ag(t) = Ay (1) € Z[t,t71]



Universal cyclic cover: corresponds to the kernel

of the unique epimorphism (M) — Z.
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Alexander polynomial (192 3):

Ak (t) = Ay (1) € Z[t,t71]




Universal cyclic cover: corresponds to the kernel

of the unique epimorphism (M) — Z.

Ay = H{(M;Q) is a module over A = Q[t*1],
where (t) is the covering group.

As A is a PID,

Av =TT ()
k=0

Define

Ay () = | | pre(0) € Q[et,t71]

k=0

Figure-8 knot:

Ay=t-3+t1




Ay = Hl(ﬁ;Q) is a module over A =
where (t) is the covering group.

Q[t*1],

As A is a PID,

[l A o)

Define

[Tri®) € Qlt,t71]

k=0

Ay (T) =

Figure-8 knot:

Ay=t-3+t1!

Genus:

g = min (genus of S with 05 = K)
= min (genus of S gen. H,(M,0M; 7))

Fundamental fact:

2g = deg(Ay)

As A, is
Q29, the inequality fol-

Proof: Note deg(A,) = dimg(Ay).
generated by H;(S5;Q)
lows.

112
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g = min (genus of S with 05 = K)
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Fundamental fact:
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Q29, the inequality fol-

A(t) determines g for all alternating knots and
all fibered knots.

Kinoshita-Terasaka knot: A(t) = 1 but g = 2.

By

Idea: Improve A,; by looking at Hl(ﬁ;vp) for
the system of local coefficients coming from a
representation «: (M) — GL(V). [Lin 1990;
Wada 1994,...]

Twisted Alexander polynomial: Ty o € Flt*1]



A(t) determines g for all alternating knots and
all fibered knots.

Kinoshita-Terasaka knot: A(t) = 1 but g = 2.

By

Idea: Improve A,; by looking at Hl(ﬁ;vp) for
the system of local coefficients coming from a
representation «: (M) — GL(V). [Lin 1990;
Wada 1994,...]

Twisted Alexander polynomial: T o € Flt=1]

Technically, it’s best to define T, , as a torsion,
a la Reidemeister/Milnor/Turaeuv.

Genus bound: When « is irreducible and non-
trivial:
2g—-1=>

dimV deg(Tar,a) (*)

Proof:
deg(Ty ) = dim Hy (M;V,)
<dimH;(S;V,) = (dimV) - | x(S) |

Thm (Friedl-Vidussi) If 2g — 1 = ﬁdeg(’rM’(x)
and Ty « is monic for all x, then M is fibered.

If 1 (M) is RFRS, then there exists some x where
(%) is sharp.

The above results hinge on work of Agol.

Thm (Wise) If M is hyperbolic, then (M) is
virtually special, hence RFRS.



Technically, it’s best to define T, , as a torsion,
a la Reidemeister/Milnor/Turaeuv.

Genus bound: When « is irreducible and non-
trivial:
2g—-1=>

dimV deg(Tar,o) (%)

Proof:
deg(Ty o) = dim Hy (M;V,)
<dimHy(S;Vy) = (dimV) - [x(S) ]

Thm (Friedl-Vidussi) If2g — 1 = ﬁdeg(’rMﬂ)
and Ty « is monic for all x, then M is fibered.

If Tt1 (M) is RFRS, then there exists some x where
(%) is sharp.

The above results hinge on work of Agol.

Thm (Wise) If M is hyperbolic, then T1(M) is
virtually special, hence RFRS.

Assumption: M is hyperbolic, i.e.

M= [H]B/r for a lattice T' < Isom™ H3

Thus have a faithful representation

«: 11 (M) — SL,C < GL(V) where V = C?,

Hyperbolic Alexander polynomial:

Ty (t) € C[t*!] coming from Hy(M;V,).
Examples:
e Figure-8: Ty =t -4 +t1

e Kinoshita-Terasaka:

Ty ~ (4417926 + 0.376029i) (13 +t3)
—(22.941644 + 4.845091i) (t% + t~2)
+(61.964430 + 24.097441i)(t + 1)
— (—82.695420 + 43.485388i)



Assumption: M is hyperbolic, i.e.

M= [H]B/r for a lattice T < Isom™ H3

Thus have a faithful representation

o: 11 (M) — SL,C < GL(V) where V = C?,

Hyperbolic Alexander polynomial:

Ty (t) € C[t*!] coming from Hy(M;V,).
Examples:
o Figure-8: 1)y =t —4+t1

e Kinoshita-Terasaka:

Ty ~(4.417926 + 0.376029i) (13 +t73)
—(22.941644 + 4.845091i) (t% +t~2)
+(61.964430 + 24.097441i)(t + 1)
— (—82.695420 + 43.485388i)

Basic Properties:

Ty is an unambiguous element of C[t*!]

with Ty, (t) = Ty (t71).

The coefficients of Ty, lie in Q(tr(I')) and
are often algebraic integers.

Ty (C) # O for any root of unity C.

T3 = Ty (1)
M amphichiral = T, (t) € R[t*1].

Genus bound:

Ag — 2 = deg Ty (0)

For the KT knot, g = 2 and deg Ty, (t) = 3 so
this is sharp, unlike with A,,.
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Knots by the numbers:

313,231

22

8,834

7,972

number of prime knots with
at most 15 crossings. [HTW 98]

number which are non-hyperbolic.
number where 2g > deg(Ay,).

number of non-fibered knots
where A,; is monic.



Knots by the numbers:

313,231 number of prime knots with
at most 15 crossings. [HTW 98]

Basic Properties: 22 number which are non-hyperbolic.

e Ty iS an unambiguous element of C[t*!]

with Ty (1) = Ty (t-1). 8,834 number where 2g > deg(Ay,).

o The coefficients of Ty lie in Q(tr(I')) and 7,972 number of non-fibered knots
are often algebraic integers. where A,; is monic.

e Ty (C) # O for any root of unity C. 0 number where &g — 2 > deg(Ty)
_ -

o Tyr = Ty ()
e M amphichiral = T, (t) € R[t*1]. O number of non-fibered knots

where T,; is monic.
e Genus bound:

4g — 2 > deg Ty (t) Conj. T, determines the genus and fibering for

any hyperbolic knot in S3.
For the KT knot, g = 2 and deg Ty, (t) = 3 so

this is sharp, unlike with A,,. Computing T, Approximate 1, (M) — SL,C to

250 digits by solving the gluing equations asso-
ciated to some ideal triangulation of M to high
precision.



Knots by the numbers:

313,231 number of prime knots with

at most 15 crossings. [HTW 98]

22 number which are non-hyperbolic.

8,834 number where 2g > deg(Ay).

7,972 number of non-fibered knots

where A,; is monic.
O number where 4g — 2 > deg(Ty).

O number of non-fibered knots
where T,; is monic.

Conj. T, determines the genus and fibering for
any hyperbolic knot in S3.

Computing Ty, Approximate 11y (M) — SL,C to
250 digits by solving the gluing equations asso-
ciated to some ideal triangulation of M to high
precision.

Genus and fibering for most of these knots was
previously unknown; Haken-style normal surface
algorithms are impractical in this range, various
tricks were used.

The conjecture is not even known for 2-bridge
knots, even though the plain A,; works.

Can consider other reps to SL,C, understand how
Ty, o Varies as you move around the character va-
riety:

Example: m037, Xo = C\ {-2,0, 2}

(u+2)* .
e (t+¢72)
s (u+ 2)(u*+4u3 - 8u? + 16u + 16)

8 (u — 2)u?

Txo(t) =
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