Hyperbolically twisted Alexander polynomials of knots

Nathan M. Dunfield University of Illinois

Stefan Friedl Köln

Nicholas Jackson
Warwick

CBMS-NSF Conference, August 5, 2011

This talk available at http://dunfield.info/ Math blog: http://Idtopology.wordpress.com/

Setup:

- Knot: $K=S^{1} \hookrightarrow S^{3}$
- Exterior: $M=S^{3}-\stackrel{\circ}{N}(K)$

A basic and fundamental invariant of K its Alexander polynomial (1923):

$$
\Delta_{K}(t)=\Delta_{M}(t) \in \mathbb{Z}\left[t, t^{-1}\right]
$$

Universal cyclic cover: corresponds to the kernel of the unique epimorphism $\pi_{1}(M) \rightarrow \mathbb{Z}$.

$A_{M}=H_{1}(\widetilde{M} ; \mathbb{Q})$ is a module over $\Lambda=\mathbb{Q}\left[t^{ \pm 1}\right]$, where $\langle t\rangle$ is the covering group.

As Λ is a PID,

$$
A_{M}=\prod_{k=0}^{n} \Lambda /\left(p_{k}(t)\right)
$$

Define

$$
\Delta_{M}(t)=\prod_{k=0}^{n} p_{k}(t) \in \mathbb{Q}\left[t, t^{-1}\right]
$$

Figure-8 knot:

$$
\Delta_{M}=t-3+t^{-1}
$$

Genus:

$$
\begin{aligned}
g & =\min (\text { genus of } S \text { with } \partial S=K) \\
& =\min \left(\text { genus of } S \text { gen. } H_{2}(M, \partial M ; \mathbb{Z})\right)
\end{aligned}
$$

Fundamental fact:

$$
2 g \geq \operatorname{deg}\left(\Delta_{M}\right)
$$

Proof: Note $\operatorname{deg}\left(\Delta_{M}\right)=\operatorname{dim}_{\mathbb{Q}}\left(A_{M}\right)$. As A_{M} is generated by $H_{1}(S ; \mathbb{Q}) \cong \mathbb{Q}^{2 g}$, the inequality follows.
$\Delta(t)$ determines g for all alternating knots and all fibered knots.

Kinoshita-Terasaka knot: $\Delta(t)=1$ but $g=2$.

Idea: Improve Δ_{M} by looking at $H_{1}\left(\widetilde{M} ; V_{\rho}\right)$ for the system of local coefficients coming from a representation $\alpha: \pi_{1}(M) \rightarrow \operatorname{GL}(V)$. [Lin 1990; Wada 1994,...]

Twisted Alexander polynomial: $\boldsymbol{\tau}_{M, \alpha} \in \mathbb{F}\left[t^{ \pm 1}\right]$

Technically, it's best to define $\tau_{M, \alpha}$ as a torsion, a la Reidemeister/Milnor/Turaev.

Genus bound: When α is irreducible and nontrivial:

$$
2 g-1 \geq \frac{1}{\operatorname{dim} V} \operatorname{deg}\left(\tau_{M, \alpha}\right)
$$

Proof:

$$
\begin{aligned}
\operatorname{deg}\left(\tau_{M, \alpha}\right) & =\operatorname{dim} H_{1}\left(\widetilde{M} ; V_{\alpha}\right) \\
& \leq \operatorname{dim} H_{1}\left(S ; V_{\alpha}\right)=(\operatorname{dim} V) \cdot|\chi(S)|
\end{aligned}
$$

Chm (Friedl-Vidussi) If $2 g-1=\frac{1}{\operatorname{dim} V} \operatorname{deg}\left(\tau_{M, \alpha}\right)$ and $\tau_{M, \alpha}$ is monic for all α, then M is fibered.

If $\pi_{1}(M)$ is RFRS, then there exists some α where (\star) is sharp.

The above results hinge on work of Agol.

Chm (Wise) If M is hyperbolic, then $\pi_{1}(M)$ is virtually special, hence RFRS.

Assumption: M is hyperbolic, i.e.

$$
\stackrel{\circ}{M}=\mathbb{W}^{3} / \Gamma \text { for a lattice } \Gamma \leq \text { Isom }^{+} \mathbb{M}^{3}
$$

Thus have a faithful representation
$\alpha: \pi_{1}(M) \rightarrow \mathrm{SL}_{2} \mathbb{C} \leq \mathrm{GL}(V) \quad$ where $V=\mathbb{C}^{2}$.
Hyperbolic Alexander polynomial:
$\tau_{M}(t) \in \mathbb{C}\left[t^{ \pm 1}\right] \quad$ coming from $H_{1}\left(\widetilde{M} ; V_{\alpha}\right)$.
Examples:

- Figure-8: $\tau_{M}=t-4+t^{-1}$
- Kinoshita-Terasaka:

$$
\begin{aligned}
\tau_{M} \approx & (4.417926+0.376029 i)\left(t^{3}+t^{-3}\right) \\
& -(22.941644+4.845091 i)\left(t^{2}+t^{-2}\right) \\
& +(61.964430+24.097441 i)\left(t+t^{-1}\right) \\
& -(-82.695420+43.485388 i)
\end{aligned}
$$

Basic Properties:

- τ_{M} is an unambiguous element of $\mathbb{C}\left[t^{ \pm 1}\right]$ with $\tau_{M}(t)=\tau_{M}\left(t^{-1}\right)$.
- The coefficients of τ_{M} lie in $\mathbb{Q}(\operatorname{tr}(\Gamma))$ and are often algebraic integers.
- $\tau_{M}(\zeta) \neq 0$ for any root of unity ζ.
- $\boldsymbol{\tau}_{M}=\overline{\boldsymbol{\tau}_{M}(t)}$
- M amphichiral $\Rightarrow \boldsymbol{\tau}_{M}(t) \in \mathbb{R}\left[t^{ \pm 1}\right]$.
- Genus bound:

$$
4 g-2 \geq \operatorname{deg} \tau_{M}(t)
$$

For the KT knot, $g=2$ and $\operatorname{deg} \tau_{M}(t)=3$ so this is sharp, unlike with Δ_{M}.

Knots by the numbers:

313,231 number of prime knots with at most 15 crossings. [HTW 98]

22 number which are non-hyperbolic.

8,834 number where $2 g>\operatorname{deg}\left(\Delta_{M}\right)$.

7,972 number of non-fibered knots where Δ_{M} is monic.

Basic Properties:

- τ_{M} is an unambiguous element of $\mathbb{C}\left[t^{ \pm 1}\right]$ with $\tau_{M}(t)=\tau_{M}\left(t^{-1}\right)$.
- The coefficients of τ_{M} lie in $\mathbb{Q}(\operatorname{tr}(\Gamma))$ and are often algebraic integers.
- $\tau_{M}(\zeta) \neq 0$ for any root of unity ζ.
- $\boldsymbol{\tau}_{M}=\overline{\boldsymbol{\tau}_{M}(t)}$
- M amphichiral $\Rightarrow \boldsymbol{\tau}_{M}(t) \in \mathbb{R}\left[t^{ \pm 1}\right]$.
- Genus bound:

$$
4 g-2 \geq \operatorname{deg} \tau_{M}(t)
$$

For the KT knot, $g=2$ and $\operatorname{deg} \tau_{M}(t)=3$ so this is sharp, unlike with Δ_{M}.

Knots by the numbers:

313,231 number of prime knots with at most 15 crossings. [HTW 98]

22 number which are non-hyperbolic. 8,834 number where $2 g>\operatorname{deg}\left(\Delta_{M}\right)$.

7,972 number of non-fibered knots where Δ_{M} is monic.

0 number where $4 g-2>\operatorname{deg}\left(\tau_{M}\right)$.
0 number of non-fibered knots where τ_{M} is monic.

Conj. τ_{M} determines the genus and fibering for any hyperbolic knot in S^{3}.

Computing τ_{M} : Approximate $\pi_{1}(M) \rightarrow S L_{2} \mathbb{C}$ to 250 digits by solving the gluing equations associated to some ideal triangulation of M to high precision.

Genus and fibering for most of these knots was previously unknown; Haken-style normal surface algorithms are impractical in this range, various tricks were used.

The conjecture is not even known for 2-bridge knots, even though the plain Δ_{M} works.

Can consider other reps to $\mathrm{SL}_{2} \mathbb{C}$, understand how $\tau_{M, \alpha}$ varies as you move around the character variety:

Example: $m 037, X_{0}=\mathbb{C} \backslash\{-2,0,2\}$

$$
\begin{aligned}
\tau_{X_{0}}(t)= & \frac{(u+2)^{4}}{16 u^{2}}\left(t+t^{-1}\right) \\
& +\frac{(u+2)\left(u^{4}+4 u^{3}-8 u^{2}+16 u+16\right)}{8(u-2) u^{2}}
\end{aligned}
$$

