Talk by Nathan Dunfield given at Univ of Warick, July 1999

Def. A surface S embedded in a 3-manifold M is incompressible if $\pi_1 S \to \pi_1 M$ is injective.

Def. A 3-manifold is Haken if it is irreducible and contains an incompressible surface.

Result. Of the 246 closed hyperbolic 3-manifolds in the Hodgson-Weeks census whose volumes are less than 3, exactly 15 are Haken. These are:

Volume	Name	Volume	Name
2.36270079	m015(8, 1)	2.70678331	m030(5,3)
2.42558538	m019(3, 4)	2.78680455	m082(1,3)
2.60918124	m026(-5, 2)	2.81178577	m145(1,3)
2.66674478	m036(-4, 3)	2.81251650	m070(-3, 2)
2.66674478	m040(-4, 3)	2.81251650	m069(-3, 2)
2.66674478	m140(4, 1)	2.88249439	m100(2,3)
2.66674478	m037(4,3)	2.97032111	m137(3, 2)
2.67947581	m034(5, 2)		

Motivation

Conjecture (Poincaré+) A 3-manifold with cyclic π_1 is a lens space or $S^2 \times S^1$.

Strategy introduced by Culler-Shalen:

A knot is round if its exterior is a solid torus.

A property Z of knots in closed 3-mflds is called *ubiq-uitous* if every closed, irreducible, non-Haken 3-manifold contains a knot with prop Z.

A property Z of knots is called *spiffy* if in a 3-mfld with cyclic π_1 the only knot with this prop is round.

If there is a property of knots which is both ubiquitous and spiffy, this proves Poincaré. Culler-Shalen suggested a possible property that might be both ubiquitous and spiffy. It concerns the incompressible surfaces in the exterior M of a knot K.

Let $M = \Sigma \setminus N(K)$ be the exterior of a knot in a closed 3-manifold Σ .

An isotopy class of simple closed curves in ∂M , called a slope, is determined by a class in $H_1(\partial M, \mathbb{Z})/(\pm 1)$. Choosing a nice basis, can record the slope as a number in $\mathbb{Q} \cup \infty$.

Consider a properly embedded incompressible surface in M which has torus boundary: $(S, \partial S) \hookrightarrow (M, \partial M)$.

The components of ∂S are all parallel in ∂M and so have the same slope, called the boundary slope of S.

Thm (Hatcher) For a fixed M there are only finitely many boundary slopes

Thus a knot has a well defined diameter of its set of boundary slopes.

Thm (Culler-Shalen) Let K be a knot in a manifold with cyclic π_1 . Then K is either round or the diameter of the set of boundary slopes is at least 2.

So the following property is spiffy:

(*) The complement of K is irreducible and the diameter of the set of boundary slopes is less than 2.

Is it also ubiquitous? i.e. does every non-Haken 3-manifold have such a knot? Probably not, but some slight strengthing might well be.

I checked that in 1000's of small hyperbolic 3-manifolds there are knots with this property (short geodesics). There were a few exceptions where I was unable to find such a knot. For one of those, I was able to show that it was non-Haken. It is probably a counterexample to the ubiquitousness of (*).

Geography of volumes of orientable hyperbolic 3-manifolds:

Suppose M is a closed orientable hyperbolic 3-manifold.

Thm (Culler-Hersonsky-Shalen) If the first betti number of M is at least 3 then vol(M) > 0.946.

Thm (Agol) If M has a non-fibroid incompressible surface then vol(M) > 2.02.

Algorithms to decide whether a manifold is Haken

Using normal surface theory, Jaco and Oertel have given an algorithm to decide if a 3-manifold M contains an incompressible surface. In normal surface theory, you look at surfaces which meet a fixed triangulation of M in a standard way.

- If M is irreducible, any incompressible surface can be made normal.
- Finding normal surfaces is linear algebra.
- Complexity increases very rapidly in the size of the triangulation.

There are two parts to Jaco and Oertel's algorithm:

- 1. Enumerate a finite list of surfaces such that if there is an incompressible surface then there is one on this list.
- 2. Split the manifold along each of these surfaces. Apply normal surface theory again to see if any are incompressible.

Guiding Philosophy: It's OK to do (1), but doing (2) is not a Good Idea.

Let M be a 3-manifold with ∂M a torus. Dehn filling creates a closed manifold by gluing on a solid torus: $(D^2 \times S^1) \cup_f M$ where $f \colon \partial M \to \partial (D^2 \times S^1)$ is a homeomorphism. The homeomorphism type of M depends only on the isotopy class of $f(\partial D^2 \times \{pt\})$.

Such an isotopy class, called a slope, is determined by a class in $H_1(\partial M, \mathbb{Z})/(\pm 1)$. The Dehn filling of M so that a class α bounds a disk in the solid torus will be denoted $M(\alpha)$.

Cyclic Surgery Thm (CGLS) Let M be a 3-manifold with torus boundary which is not Seifert fibered. Suppose $M(\alpha)$ and $M(\beta)$ have cyclic fundamental groups. Then $\Delta(\alpha, \beta) \leq 1$. In particular, there are at most 3 such slopes.

Def. A 3-manifold is small if it contains no closed, non-boundary parallel, incompressible surface.

Ex. The complement of a 2-bridge knot is small, as is a punctured torus bundle over the circle.

Consider a properly embedded incompressible surface in a 3-manifold M with torus boundary: $(S, \partial S) \hookrightarrow (M, \partial M)$.

The components of ∂S are all parallel in ∂M and so they have the same slope in $H_1(\partial M, \mathbb{Z})/(\pm 1)$, called the boundary slope of S.

Thm (Hatcher) For a fixed M there are only finitely many boundary slopes

Prop. Let M be a 3-manifold with ∂ M a torus. Suppose M is small. Then if α is not the boundary slope of an incompressible surface then M(α) is non-Haken.

Note: Could replace "incompressible" by "normal" because any incompressible surface can be made normal.

Algorithm (Small \rightarrow **non-Haken)** If M is a small manifold with ∂ M a torus then it is possible to conclude that all but finitely many Dehn fillings of M are non-Haken.

Can do this without ever deciding whether a normal surface is incompressible. Still get a finite number of exceptions because of Jaco and Sedgwick's analogue of Hatcher's theorem.

Sometimes, one can go the other direction.

Thm (Wu-CGLS) Let M be an irreducible 3-manifold whose boundary is a torus. Suppose α and β are slopes such that $M(\alpha)$ and $M(\beta)$ contain no incompressible surfaces. Suppose moreover $\Delta(\alpha, \beta) > 1$. Then M is small unless there exists an incompressible surface with boundary slope γ such that

$$\Delta(\alpha, \gamma) = \Delta(\alpha, \beta) = 1.$$

Leads to an easy algorithm if replace incompressible with normal.

Algorithm (non-Haken \rightarrow **small)** If M is a 3-manifold with torus boundary and one knows that many Dehn fillings on M are non-Haken, then it may be possible to conclude that M is small.

How to determine that many small volume closed hyperbolic manifolds are non-Haken

Start with:

- A census of closed orientable hyperbolic 3-manifolds (Hodgson-Weeks).
- A census of hyperbolic 3-manifolds with one cusp (Callahan-Hildebrand-Weeks).
- A list of normal slopes of each cusped manifold.

Bootstrap process:

How do decide it a closed hyperbolic 3-manifold is Haken

Thm (CGLS) Let M be an irreducible 3-manifold with torus boundary and dim $H_1(M, \mathbb{Q}) = 1$. If α is the boundary slope of an incompressible surface then either:

- 1. $M(\alpha)$ is a Haken manifold; or
- 2. $M(\alpha)$ is a connected sum of two lens spaces; or
- 3. M contains a closed incompressible surface which remains incompressible in $M(\beta)$ whenever

$$\Delta(\alpha, \beta) > 1$$
.

Cor. 1 If M is small and α is a boundary slope then M(α) is Haken.

Cor. 2 If α is a boundary slope and $M(\alpha)$ is non-Haken then $M(\beta)$ is Haken for the infinitely many β where $\Delta(\alpha, \beta) > 1$.

Problem is that you still need to find *incompressible* surfaces in M.

Character variety theory to the rescue (Culler-Shalen)

Can get topological information out of $PSL_2\mathbb{C}$ character varieties. Let

$$X(M) = \text{Hom}(\pi_1 M, PSL_2 \mathbb{C}) / \text{conjugation},$$

an affine algebraic variety over \mathbb{C} . Let X_0 be an irreducible component of X(M) containing the conjugacy class of a discrete faithful representation ρ_0 . X_0 is an affine curve:

 X_0 has a natural compactification by adding ideal points. Each ideal point has associated to it an incompressible surface. Info about the surfaces can be computed from X_0 . In order to extract the information about boundary slopes it is easiest to project X(M) onto $X(\partial M)$. This can be done using Gröbner bases, but this quickly becomes difficult.