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Setup:

• Knot: K = S1 ↩ S3

• Exterior: M = S3 −N◦(K)

A basic and fundamental invariant of K its

Alexander polynomial (1923):

∆K(t) = ∆M(t) ∈ Z[t, t−1]
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AM = H1(M̃ ;Q) is a module over Λ = Q[t±1],
where 〈t〉 is the covering group.

As Λ is a PID,

AM =
n∏

k=0

Λ
/(
pk(t)

)

Define

∆M(t) =
n∏

k=0
pk(t) ∈ Q[t, t−1]

Figure-8 knot:

∆M = t − 3+ t−1
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Fundamental fact:

2g ≥ deg(∆M)

Proof: Note deg(∆M) = dimQ(AM). As AM is

generated by H1(S;Q) � Q2g, the inequality fol-

lows.
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∆(t) determines g for all alternating knots and

all fibered knots.

Kinoshita-Terasaka knot: ∆(t) = 1 but g = 2.

Idea: Improve ∆M by looking at H1(M̃ ;Vρ) for

the system of local coefficients coming from a

representation α : π1(M) → GL(V). [Lin 1990;

Wada 1994,...]

Twisted Alexander polynomial: τM,α ∈ F[t±1]
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Technically, it’s best to define τM,α as a torsion,

a la Reidemeister/Milnor/Turaev.

Genus bound: When α is irreducible and non-

trivial:
2g − 1 ≥ 1

dimV
deg(τM,α) (?)

Proof:

deg(τM,α) = dimH1(M̃ ;Vα)

≤ dimH1(S;Vα) = (dimV) · ∣∣χ(S)∣∣

Thm (Friedl-Vidussi, using Agol and Wise)

IfM is hyperbolic, then there exists some α where

(?) is sharp.

Idea: By Wise, π1(M) is virtually special, hence

RFRS. By Agol, there exists a finite cover of M
where the lift of S is a limit of fiberations. Use α
associated to this cover.
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Assumption: M is hyperbolic, i.e.

M
◦ = H3/

Γ for a lattice Γ ≤ Isom+H3

Thus have a faithful representation

α : π1(M)→ SL2C ≤ GL(V) where V = C2.

Hyperbolic Alexander polynomial:

τM(t) ∈ C
[
t±1] coming from H1(M̃ ;Vα).

Examples:

• Figure-8: τM = t − 4+ t−1

• Kinoshita-Terasaka:

τM ≈(4.417926+ 0.376029i)(t3 + t−3)

− (22.941644+ 4.845091i)(t2 + t−2)

+ (61.964430+ 24.097441i)(t + t−1)

− (−82.695420+ 43.485388i)
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Basic Properties:

• τM is an unambiguous element of C[t±1]
with τM(t) = τM(t−1).

• The coefficients of τM lie in Q
(
tr(Γ)

)
and

are often algebraic integers.

• τM(ζ) ≠ 0 for any root of unity ζ.

• τM = τM(t)
• M amphichiral ⇒ τM(t) ∈ R[t±1].

• Genus bound:

4g − 2 ≥ degτM(t)

For the KT knot, g = 2 and degτM(t) = 6 so

this is sharp, unlike with ∆M.
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Knots by the numbers:

313,231 number of prime knots with
at most 15 crossings. [HTW 98]

22 number which are non-hyperbolic.

8,834 number where 2g > deg(∆M).

7,972 number of non-fibered knots
where ∆M is monic.

0 number where 4g − 2 > deg(τM).

0 number of non-fibered knots
where τM is monic.

Conj. τM determines the genus and fibering for

any hyperbolic knot in S3.

Computing τM: Approximate π1(M) → SL2C to

250 digits by solving the gluing equations asso-

ciated to some ideal triangulation of M to high

precision.
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Genus and fibering for most of these knots was

previously unknown; Haken-style normal surface

algorithms are impractical in this range, various

tricks were used.

Q. How can we prove this conjecture?

Not known to be true for infinitely many non-

fibered knots!

If conjecture and GRH are true, then knot genus

is in NP∩ co-NP.
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Approach 1: Deform the representation

Can consider other reps to SL2C, understand how

τM,α varies as you move around the character va-

riety:

Example: m037, X0 = C \ {−2,0,2}

τX0
(t) =(u+ 2)4

16u2

(
t + t−1

)

+ (u+ 2)
(
u4 + 4u3 − 8u2 + 16u+ 16

)

8 (u− 2)u2

Can sometimes connect this universal polynomial

to ∆M.

Ideal points corresponding to S: not helpful.
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Approach 2: Use adjoint representation

Isom+(H3) = PSL2(C)→ Aut(sl2) ≤ SL3C

to get τadj
M (Dubois-Yamaguchi).

Point: T[α]X
(
π1(M)

) = H1(M, (sl2)adj◦α
)

8,834 knots where 2g > deg(∆M).

8,252 knots where 6g − 3 > deg
(
τadj
M
)
.

12 knots where 6g − 9 ≥ deg
(
τadj
M
)
.

7,972 non-fibered with ∆M monic.

0 non-fibered with τadj
M monic.

Geometric isolation phenomena
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Approach 3: Gauge theory

[Kronheimer-Mrowka] Instanton Floer homology

detects the genus!


