The Least Spanning Area of a Knot and the

Optimal Bounding Chain Problem

Nathan M. Dunfield
University of Illinois, Mathematics

Anil N. Hirani
University of Illinois, Computer Science

Hyamfest, July 2011

Based on arXiv:1012.303

Slides available at http://dunfield.info

Knot: A smooth embedding of S^{1} in a closed orientable 3-manifold Y.

Spanning surface: If $K=0$ in $H_{1}(Y ; \mathbb{Z})$, it is the boundary of an orientable embedded surface S.

Problem: Find the least genus $g(K)$ of such an S.

In the 1960s, Haken used normal surfaces to give an algorithm to compute $g(K)$. Here, Y is given as a simplicial complex \mathcal{T}, and K is a loop of edges in \mathcal{T}^{1}.

Knot Genus: Given $K \subset \mathcal{T}^{\text {l }}$ and $g_{0} \in \mathbb{N}$, is $g(K) \leq g_{0}$?

Agol-Hass-Thurston (2002)
Knot Genus is NP-complete.

Decidable

Exp. time \quad Is $\operatorname{dim}\left(K h_{*}(K)\right) \leq 10$?

NP
Is there a hamiltonian cycle?
Are two graphs isomorphic?
Traveling salesman

P Polynomial time Is a list sorted?

Is Δ_{K} monic?
Word prob. in a hyp. group

When Y is simple, e.g. S^{3}, then Knot Genus should be in NP \cap co-NP, and might even be in \mathbf{P}.

Least area: Y Riemannian, K null-homologous. By geometric measure theory, there exists a spanning surface of least area.

Discrete version: Assign each 2 -simplex in \mathcal{T} an area (in \mathbb{N}), consider spanning surfaces "built out of" 2 -simplices of \mathcal{T}.

Least Spanning Area: Given $K \subset \mathcal{T}^{\text {l }}$ and $A_{0} \in \mathbb{N}$, is there a spanning surface with area $\leq A_{0}$?

Agol-Hass-Thurston (2002)
Least Spanning Area is NP-complete.

Thm (D-H) When $H_{2}(Y ; \mathbb{Z})=0$, e.g. $Y=S^{3}$, Least Spanning Area can be solved in polynomial time.

Algorithm uses linear programming.

Thm (D-H) When $H_{2}(Y ; \mathbb{Z})=0$, e.g. $Y=S^{3}$, Least Spanning Area can be solved in polynomial time.

Approach:

1. Consider the related Optimal Bounding Chain Problem, where S is a union of 2simplices of \mathcal{T} but perhaps not a surface.
2. Reduce to an instance of the Optimal Homologous Chain Problem that can be solved in polynomial time. [Dey-H-Krishnamoorthy 2010]
3. Desingularize the result using two topological tools.

Homology: X a finite simplicial complex, with $C_{n}(X ; \mathbb{Z})$ the free abelian group with basis the n-simplices of X.

Boundary map: $\partial_{n}: C_{n}(X ; \mathbb{Z}) \rightarrow C_{n-1}(X ; \mathbb{Z})$ Homology:

$$
H_{n}(X ; \mathbb{Z})=\operatorname{ker}\left(\partial_{n}\right) / \operatorname{image}\left(\partial_{n+1}\right)
$$

Assign a "volume" to each n-simplex in X, which gives $C_{n}(X ; \mathbb{Z})$ an ℓ^{1}-norm.

$$
\|c\|_{1}=\sum\left|a_{i}\right| \operatorname{Vol}\left(\sigma_{i}\right) \quad \text { where } c=\sum a_{i} \sigma_{i}
$$

Optimal Homologous Chain Problem (OHCP)

Given $a \in C_{n}(X ; \mathbb{Z})$ find $c=a+\partial_{n+1} x$ with $\|c\|_{1}$ minimal.

Optimal Bounding Chain Problem (OBCP)
Given $b \in C_{n-1}(X ; \mathbb{Z})$ which is 0 in $H_{n-1}(X ; \mathbb{Z})$, find $c \in C_{n}(X ; \mathbb{Z})$ with $b=\partial_{n} c$ and $\|c\|_{1}$ minimal.

Thm (D-H) OHCP and OBCP are NP-hard.

OHCP with mod 2 coefficients is NP-hard by [Chen-Freedman 2010].

Dey-H-Krishnamoorthy (2010) When X is relatively torsion-free in dimension n, then the OHCP for $C_{n}(X ; \mathbb{Z})$ can be solved in polynomial time.

Key: Orientable $(n+1)$-manifolds are relatively torsion-free.

Thm (D-H) When X is relatively torsion free in dimension n and $H_{n}(X ; \mathbb{Z})=0$, then the OBCP for $C_{n-1}(X ; \mathbb{Z})$ can be solved in polynomial time.

Compare

Thm (D-H) When $H_{2}(Y ; \mathbb{Z})=0$, the Least Spanning Area problem for a knot K can be solved in polynomial time.

Desingularization: a toy problem

In a triangulated rectangle X, find the shortest embedded path in the 1 -skeleton joining vertices p and q.

Consider $b=q-p \in C_{0}(X ; \mathbb{Z})$, which is 0 in $H_{0}(X ; \mathbb{Z})$. Let $c \in C_{1}(X ; \mathbb{Z})$ be a solution to the OBCP for b.

Claim: c corresponds to an embedded simplicial path.

Rest of desingularization

1. Pass to the exterior of the knot K.

2. Introduce a relative version of the Optimal Bounding Chain Problem.
