The Least Spanning Area of a Knot and the Optimal Bounding Chain Problem

Nathan M. Dunfield University of Illinois, Mathematics

Anil N. Hirani University of Illinois, Computer Science

Hyamfest, July 2011

Based on arXiv:1012.303

Slides available at http://dunfield.info

Knot: A smooth embedding of S^1 in a closed orientable 3-manifold Y.

Spanning surface: If K = 0 in $H_1(Y;\mathbb{Z})$, it is the boundary of an orientable embedded surface *S*.

Problem: Find the least genus g(K) of such an *S*.

In the 1960s, Haken used normal surfaces to give an algorithm to compute g(K). Here, Y is given as a simplicial complex \mathcal{T} , and K is a loop of edges in \mathcal{T}^1 .

Knot Genus: Given $K \subset \mathcal{T}^1$ and $g_0 \in \mathbb{N}$, is $g(K) \leq g_0$?

Agol-Hass-Thurston (2002)

Knot Genus is **NP**-complete.

Decidable	
E	Exp. time Is dim $(Kh_*(K)) \le 10$?
	NP
	Is there a hamiltonian cycle?
	Are two graphs isomorphic?
	Traveling salesman
	P Polynomial time
	Is a list sorted?
	Is Δ_K monic?
	Word prob. in a hyp. group

When Y is simple, e.g. S^3 , then Knot Genus should be in **NP** \cap **co-NP**, and might even be in **P**.

Least area: *Y* Riemannian, *K* null-homologous. By geometric measure theory, there exists a spanning surface of least area.

Discrete version: Assign each 2-simplex in \mathcal{T} an area (in \mathbb{N}), consider spanning surfaces "built out of" 2-simplices of \mathcal{T} .

Least Spanning Area: Given $K \subset \mathcal{T}^1$ and $A_0 \in \mathbb{N}$, is there a spanning surface with area $\leq A_0$?

Agol-Hass-Thurston (2002) Least Spanning Area is NP-complete.

Thm (D-H) When $H_2(Y;\mathbb{Z}) = 0$, e.g. $Y = S^3$, Least Spanning Area can be solved in polynomial time.

Algorithm uses linear programming.

Thm (D-H) When $H_2(Y;\mathbb{Z}) = 0$, e.g. $Y = S^3$, Least Spanning Area can be solved in polynomial time.

Approach:

- 1. Consider the related Optimal Bounding Chain Problem, where S is a union of 2simplices of \mathcal{T} but perhaps not a surface.
- Reduce to an instance of the Optimal Homologous Chain Problem that can be solved in polynomial time. [Dey-H-Krishnamoorthy 2010]
- 3. Desingularize the result using two topological tools.

Homology: *X* a finite simplicial complex, with $C_n(X;\mathbb{Z})$ the free abelian group with basis the *n*-simplices of *X*.

Boundary map: ∂_n : $C_n(X;\mathbb{Z}) \to C_{n-1}(X;\mathbb{Z})$ Homology:

$$H_n(X;\mathbb{Z}) = \frac{\operatorname{ker}(\partial_n)}{\operatorname{image}(\partial_{n+1})}$$

Assign a "volume" to each *n*-simplex in *X*, which gives $C_n(X;\mathbb{Z})$ an ℓ^1 -norm.

 $\|c\|_1 = \sum |a_i| \operatorname{Vol}(\sigma_i)$ where $c = \sum a_i \sigma_i$

Optimal Homologous Chain Problem (OHCP) Given $a \in C_n(X;\mathbb{Z})$ find $c = a + \partial_{n+1}x$ with $||c||_1$ minimal.

Optimal Bounding Chain Problem (OBCP)

Given $b \in C_{n-1}(X;\mathbb{Z})$ which is 0 in $H_{n-1}(X;\mathbb{Z})$, find $c \in C_n(X;\mathbb{Z})$ with $b = \partial_n c$ and $||c||_1$ minimal.

Thm (D-H) OHCP and OBCP are **NP**-hard.

OHCP with mod 2 coefficients is **NP**-hard by [Chen-Freedman 2010].

Dey-H-Krishnamoorthy (2010) When X is relatively torsion-free in dimension n, then the OHCP for $C_n(X;\mathbb{Z})$ can be solved in polynomial time.

Key: Orientable (n+1)-manifolds are relatively torsion-free.

Thm (D-H) When X is relatively torsion free in dimension n and $H_n(X;\mathbb{Z}) = 0$, then the OBCP for $C_{n-1}(X;\mathbb{Z})$ can be solved in polynomial time.

Compare

Thm (D-H) When $H_2(Y;\mathbb{Z}) = 0$, the Least Spanning Area problem for a knot K can be solved in polynomial time.

Desingularization: a toy problem

In a triangulated rectangle X, find the shortest embedded path in the 1-skeleton joining vertices p and q.

Consider $b = q - p \in C_0(X;\mathbb{Z})$, which is 0 in $H_0(X;\mathbb{Z})$. Let $c \in C_1(X;\mathbb{Z})$ be a solution to the OBCP for b.

Claim: *c* corresponds to an embedded simplicial path.

Rest of desingularization

1. Pass to the exterior of the knot *K*.

2. Introduce a relative version of the Optimal Bounding Chain Problem.