Computational complexity of problems in 3-dimensional topology exist an algorithm which solves: **ISSPHERE:** Given a triangulated M^n is it homeomorphic to S^n ? **Thm** (Geometrization + many results) There is an algorithm to decide if two compact 3-mflds are homeomorphic. Nathan Dunfield University of Illinois **Today:** How hard are these 3-manifold questions? How quickly can we solve them? **[Novikov 1962]** For $n \ge 5$, there does not slides at: http://dunfield.info/preprints/ | Decision Problems: Yes or no answer. | NP: Yes answers have proofs that can be checked in polynomial time. | |---|--| | SORTED: Given a list of integers, is it sorted? | SAT: Given $\mathbf{x} \in \mathbb{F}_2^k$, can check all $p_i(\mathbf{x}) = 0$ in linear time. | | SAT: Given $\mathfrak{p}_1, \dots \mathfrak{p}_n \in \mathbb{F}_2[x_1, \dots, x_k]$ is | in inlear time. | | there $x \in \mathbb{F}_2^k$ with $p_\mathfrak{i}(x) = 0$ for all \mathfrak{i} ? | UNKNOTTED: A diagram of the unknot with c crossings can be unknotted in $O(c^{11})$ Reidemeister moves. [Lackenby 2013] | | UNKNOTTED: Given a planar diagram for K in S^3 is K the unknot? | | | INVERTIBLE: Given $A \in M_n(\mathbb{Z})$ does it have an inverse in $M_n(\mathbb{Z})$? | | | | coNP: No answers can be checked in polynomial time. | | | | **UNKNOTTED:** Yes, assuming the GRH **P:** Decision problems which can be solved [Kuperberg 2011]. in polynomial time in the input size. **SORTED:** O(length of list) **INVERTIBLE:** $O(n^{3.5} \log(\text{largest entry})^{1.1})$ **Conj: UNKNOTTED** is in **P**. | Agol-Hass-W.Thurston 2006] KNOTGENUS is NP-complete. | | | |---|--|--| | prientable surface of genus \leqslant g? | | | | $K \subset \Gamma^{(1)}$, and a $g \in \mathbb{Z}_{\geqslant 0}$, does K bound an | | | **KNOTGENUS:** Given a triangulation T, a knot **Conj (AHT)** If $b_1(T) = 0$, then **KNOTGENUS** is in coNP. being an L-space? 3-manifolds in NP? [AHT] KNOTAREA is NP-complete. [Dunfield-Hirani 2011] KNOTAREA is in P when $b_1(T) = 0$. Computing Khovanov homology and \widehat{HFK} are in **EXPTIME**. Just computing the Jones polynomial is **#P**-hard, but the Alexander polynomial can computed in poly time. Is **KNOTGENUS** in **P** when $b_1 = 0$? Is the homeomorphism problem for What about deciding hyperbolicity? or Normal surfaces meet each tetrahedra in a standard way: and correspond to lattice points in a finite polyhedral cone in \mathbb{R}^{7t} where t = #T: **[Haken 1961]** There is a minimal genus surface bounding K in normal form whose vector is fundamental (e.g. on a vertex ray). Hence **KNOTGENUS** is decidable. A fund surface has coordinates $O(\exp t^2)$. [Hass-Lagarias-Pippenger 1999] Certificate: A vector \mathbf{x} in \mathbb{Z}^{7t} with entries [AHT 2006] KNOTGENUS is in NP. **Check:**(1) That **x** represents a normal surface *S*. with a most $O(t^2)$ digits. (2) That $\chi(S) \leqslant 1 - 2q$. (3) That $X(S) \leq 1 - 2g$. (4) That ∂S is as advertised. All can be done in time polynomial in t but need a very clever idea for (3) and (4). UNKNOTTING is in CONP. **Certificate:** $\rho: \pi_1(S^3 - K) \to SL_2\mathbb{F}_p$ where $\log p$ is O(poly(crossings)). **Check:** The following imply π_1 is not cyclic and so K is knotted. [Kuperberg 2011] Assuming GRH, (1) Relators for π_1 hold, so ρ is a rep. (2) A pair of generators have noncommuting images. Proof that such a rep exists uses algebraic geometry/number theory and: [Kronheimer-Mrowka 2004] When $K \subset S^3$ is nontrivial, there is a rep $\pi_1(S^3 - K) \to SU_2$ with nonabelian image. -lan L. A. van de Snepscheut **Mystery:** In practice, many 3-mfld questions are easier than the best theoretical bounds theory and practice. But, in practice, there is." "In theory, there is no difference between **Q:** How big a knot can we compute the genus for? indicate. **Q:** Where do we even get big knots from? There are more 100 crossing prime knots than there are atoms in the Farth! Here's a sneak peak of joint work with Malik Obeidin, based on one natural model of random knot. ## **Personal best:** crossings: 126 genus: 27 fibered: No time: 7 minutes hyperbolic volume: 223.6132847441086613 tetrahedra: 243