Computational complexity of problems in 3-dimensional topology

exist an algorithm which solves: **ISSPHERE:** Given a triangulated M^n is it homeomorphic to S^n ?

Thm (Geometrization + many results) There is an algorithm to decide if two compact 3-mflds are homeomorphic.

Nathan Dunfield University of Illinois

Today: How hard are these 3-manifold questions? How quickly can we solve them?

[Novikov 1962] For $n \ge 5$, there does not

slides at: http://dunfield.info/preprints/

Decision Problems: Yes or no answer.	NP: Yes answers have proofs that can be checked in polynomial time.
SORTED: Given a list of integers, is it sorted?	SAT: Given $\mathbf{x} \in \mathbb{F}_2^k$, can check all $p_i(\mathbf{x}) = 0$ in linear time.
SAT: Given $\mathfrak{p}_1, \dots \mathfrak{p}_n \in \mathbb{F}_2[x_1, \dots, x_k]$ is	in inlear time.
there $x \in \mathbb{F}_2^k$ with $p_\mathfrak{i}(x) = 0$ for all \mathfrak{i} ?	UNKNOTTED: A diagram of the unknot with c crossings can be unknotted in $O(c^{11})$ Reidemeister moves. [Lackenby 2013]
UNKNOTTED: Given a planar diagram for K in S^3 is K the unknot?	
INVERTIBLE: Given $A \in M_n(\mathbb{Z})$ does it have an inverse in $M_n(\mathbb{Z})$?	
	coNP: No answers can be checked in polynomial time.

UNKNOTTED: Yes, assuming the GRH **P:** Decision problems which can be solved [Kuperberg 2011]. in polynomial time in the input size.

SORTED: O(length of list) **INVERTIBLE:** $O(n^{3.5} \log(\text{largest entry})^{1.1})$

Conj: UNKNOTTED is in **P**.

Agol-Hass-W.Thurston 2006] KNOTGENUS is NP-complete.		
prientable surface of genus \leqslant g?		
$K \subset \Gamma^{(1)}$, and a $g \in \mathbb{Z}_{\geqslant 0}$, does K bound an		

KNOTGENUS: Given a triangulation T, a knot

Conj (AHT) If $b_1(T) = 0$, then **KNOTGENUS** is in coNP.

being an L-space?

3-manifolds in NP?

[AHT] KNOTAREA is NP-complete. [Dunfield-Hirani 2011] KNOTAREA is in P when $b_1(T) = 0$.

Computing Khovanov homology and \widehat{HFK} are in **EXPTIME**. Just computing the Jones polynomial is **#P**-hard, but the Alexander polynomial can computed in poly time.

Is **KNOTGENUS** in **P** when $b_1 = 0$?

Is the homeomorphism problem for

What about deciding hyperbolicity? or

Normal surfaces meet each tetrahedra in a standard way:

and correspond to lattice points in a finite

polyhedral cone in \mathbb{R}^{7t} where t = #T:

[Haken 1961] There is a minimal genus surface bounding K in normal form whose vector is fundamental (e.g. on a vertex ray).

Hence **KNOTGENUS** is decidable.

A fund surface has coordinates $O(\exp t^2)$.

[Hass-Lagarias-Pippenger 1999]

Certificate: A vector \mathbf{x} in \mathbb{Z}^{7t} with entries

[AHT 2006] KNOTGENUS is in NP.

Check:(1) That **x** represents a normal surface *S*.

with a most $O(t^2)$ digits.

(2) That $\chi(S) \leqslant 1 - 2q$.

(3) That $X(S) \leq 1 - 2g$.

(4) That ∂S is as advertised.

All can be done in time polynomial in t but need a very clever idea for (3) and (4).

UNKNOTTING is in CONP. **Certificate:** $\rho: \pi_1(S^3 - K) \to SL_2\mathbb{F}_p$

where $\log p$ is O(poly(crossings)). **Check:** The following imply π_1 is not cyclic and so K is knotted.

[Kuperberg 2011] Assuming GRH,

(1) Relators for π_1 hold, so ρ is a rep.

(2) A pair of generators have

noncommuting images.

Proof that such a rep exists uses algebraic

geometry/number theory and:

[Kronheimer-Mrowka 2004]

When $K \subset S^3$ is nontrivial, there is a rep $\pi_1(S^3 - K) \to SU_2$ with nonabelian image.

-lan L. A. van de Snepscheut **Mystery:** In practice, many 3-mfld questions are easier than the best theoretical bounds

theory and practice. But, in practice, there is."

"In theory, there is no difference between

Q: How big a knot can we compute the genus for?

indicate.

Q: Where do we even get big knots from? There are more 100 crossing prime knots than

there are atoms in the Farth! Here's a sneak peak of joint work with Malik Obeidin, based on one natural model of random knot.

Personal best:

crossings: 126 genus: 27

fibered: No time: 7 minutes

hyperbolic volume:

223.6132847441086613

tetrahedra: 243

