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Pick at random:
{Connected closed orientable 3-manifolds}

What does this actually mean?

A point (a,b) ∈ Z2 has gcd(a,b) = 1 with
probability 6

π2 ≈ 0.608.
A random trivalent graph is connected with
probability 1; the mean number of loops is
also 1.

Random Heegaard splittings: Fix g and
generators S forMCG(Σg). A random3-manifold of Heegaard genus g and
complexityN is

M = HeegaardSplitting(φ)

where φ ∈ MCG(Σg) is a randomly chosenword in S of lengthN.

[Dunfield-W. Thurston] AsN→∞, the
probability that b1(M) > 0 tends to 0.
[Maher] AsN→∞, the probability thatM
is hyperbolic tends to 1.



Limits as g→∞ often exist:

[Dunfield-W. Thurston]
Prob
{
dimH1(M;Fp) = 0

}
=

∞∏

k=1

1

1+ p−k

For p = 2 this is≈ 0.419422.
The number of surjections of π1(M) onto a
finite simple groupQ is Poisson distributed
with mean ∣∣H2(Q;Z)

∣∣
/∣∣Out(Q)

∣∣.

[Dunfield-Wong] Let Z be the SO(3) TQFT
of prime level r > 5. Then

Prob
{∣∣Z(M)

∣∣ > x
}
= e−x

2

Meta Problem 1: How is your favorite
invariant distributed for a random
3-manifold (or random knot, link, etc.)?
Experiment should be your friend here!
Meta Problem 2: Prove a conjecture holds
with positive probability.
Conj. A random 3-manifold is not an
L-space, has left-orderable π1, has a tautfoliation, and has a tight contact structure.
Probabilistic method: Prove existence by
showing at a random object has the
desired property.
[Lubotzky-Maher-Wu 2014] For all k ∈ Z
and g > 2 there exists an ZHS with Casson
invariant k and Heegaard genus g.
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