What does a random 3-manifold look like?

Nathan Dunfield University of Illinois

slides and references at: http://dunfield.info/preprints/ Pick at random:

 $\Big\{ {\sf Connected\ closed\ orientable\ 3-manifolds} \Big\}$

What does this actually mean?

A point $(a,b)\in\mathbb{Z}^2$ has $\gcd(a,b)=1$ with probability $\frac{6}{\pi^2}\approx 0.608$.

A random trivalent graph is connected with probability 1; the mean number of loops is also 1.

Random Heegaard splittings: Fix g and generators S for $MCG(\Sigma_g)$. A random 3-manifold of Heegaard genus g and complexity N is

 $M = \mathsf{HeegaardSplitting}(\varphi)$

where $\phi \in MCG(\Sigma_g)$ is a randomly chosen word in S of length N.

[Dunfield-W. Thurston] As $N \to \infty$, the probability that $b_1(M) > 0$ tends to 0.

[Maher] As $N \to \infty$, the probability that M is hyperbolic tends to 1.

Limits as $g \to \infty$ often exist:

[Dunfield-W. Thurston]

$$\mathsf{Prob}\big\{\,\mathsf{dim}\,\mathsf{H}_1(M;\mathbb{F}_{\mathfrak{p}})=0\big\}=\prod_{k=1}^{\infty}\frac{1}{1+\mathfrak{p}^{-k}}$$

For p = 2 this is ≈ 0.419422 .

The number of surjections of $\pi_1(M)$ onto a finite simple group Q is Poisson distributed with mean $\left|H_2(Q;\mathbb{Z})\right|\Big/\big|\text{Out}(Q)\big|$.

[Dunfield-Wong] Let Z be the SO(3) TQFT of prime level $r\geqslant 5$. Then

$$\mathsf{Prob}\big\{\big|\mathsf{Z}(\mathsf{M})\big|\geqslant x\big\}=e^{-x^2}$$

Meta Problem 1: How is your favorite invariant distributed for a random 3-manifold (or random knot, link, etc.)? Experiment should be your friend here!

Meta Problem 2: Prove a conjecture holds with positive probability.

Conj. A random 3-manifold is not an L-space, has left-orderable π_1 , has a taut foliation, and has a tight contact structure.

Probabilistic method: Prove existence by showing at a random object has the desired property.

[Lubotzky-Maher-Wu 2014] For all $k \in \mathbb{Z}$ and $g \geqslant 2$ there exists an $\mathbb{Z}HS$ with Casson invariant k and Heegaard genus g.

[DT2]	N. M. Dunfield and D. P. Thurston. A random tunnel number one 3-manifold does not fiber over the circle. <i>Geom. Topol.</i> 10 (2006), 2431–2499. arXiv:math/0510129.
[Mah]	J. Maher. Random Heegaard splittings. J. Topol. 3 (2010), 997–1025. arXiv:0809.4881.
[DW]	N. M. Dunfield and H. Wong. Quantum invariants of random 3-manifolds.

N. M. Dunfield and W. P. Thurston. Finite covers of random 3-manifolds.

Invent. Math. **166** (2006), 457–521. arXiv:math/0502567.

[DT1]

J. Ma. The closure of a random braid is a hyperbolic link. [Ma] Proc. Amer. Math. Soc. 142 (2014), 695–701. [LMW] A. Lubotzky, J. Maher, and C. Wu. Random methods in 3-manifold theory.

Algebr. Geom. Topol. 11 (2011), 2191–2205. arXiv:1009.1653.

Preprint 2014, 34 pages. arXiv: 1405.6410. [Riv] I. Rivin. Statistics of Random 3-Manifolds occasionally fibering over the circle. Preprint 2014, 36 pages. arXiv: 1401.5736.