Annoying trailers:

SnapPy http://snappy.computop.org

What is SnapPy?

SnapPy is a user interface to the SnapPea kernel which runs on Mac OS X, Linux, and Windows. SnapPy combines a link editor and 3D-graphics for Dirichlet domains and cusp neighborhoods with a powerful command-line interface based on the Python programming language. You can see it in action, learn how to install it, and read the tutorial.

Contents

- · Screenshots: SnapPy in action
- Installing and running SnapPy
- Tutorial
- snappy: A Python interface for SnapPea
- · Using SnapPy's link editor
- To Do List
- Development Basics: OS X
- Development Basics: Windows XP

Credits

Written by Marc Culler and Nathan Dunfield. Uses the SnapPea kernel written by Jeff Weeks. Released under the terms of the GNU General Public License.

http://www.youtube.com/user/NathanDunfield/

People who heard this talk also viewed:

J. Aaber and N. Dunfield
 Closed surface bundles of least volume
 arXiv:1002.3423

Hyperbolically twisted Alexander polynomials of knots

Nathan M. Dunfield University of Illinois

Stefan Friedl Nicholas Jackson Warwick

Jacofest, June 4, 2010

This talk available at http://dunfield.info/ Math blog: http://ldtopology.wordpress.com/

Hyperbolically twisted Alexander polynomials of knots

Nathan M. Dunfield
University of Illinois

Stefan Friedl Nicholas Jackson Warwick

Jacofest, June 4, 2010

This talk available at http://dunfield.info/ Math blog: http://ldtopology.wordpress.com/

Setup:

• Knot: $K = S^1 \hookrightarrow S^3$

• Exterior: $M = S^3 - \overset{\circ}{N}(K)$

A basic and fundamental invariant of K its Alexander polynomial (1923):

$$\Delta_K(t) = \Delta_M(t) \in \mathbb{Z}[t, t^{-1}]$$

Setup:

• Knot: $K = S^1 \hookrightarrow S^3$

• Exterior: $M = S^3 - \overset{\circ}{N}(K)$

A basic and fundamental invariant of K its Alexander polynomial (1923):

$$\Delta_K(t) = \Delta_M(t) \in \mathbb{Z}[t, t^{-1}]$$

Universal cyclic cover: corresponds to the kernel of the unique epimorphism $\pi_1(M) \to \mathbb{Z}$.

Universal cyclic cover: corresponds to the kernel of the unique epimorphism $\pi_1(M) \to \mathbb{Z}$.

 $A_M = H_1(\widetilde{M}; \mathbb{Q})$ is a module over $\Lambda = \mathbb{Q}[t^{\pm 1}]$, where $\langle t \rangle$ is the covering group.

As Λ is a PID,

$$A_M = \prod_{k=0}^n \Lambda / (p_k(t))$$

Define

$$\Delta_M(t) = \prod_{k=0}^n p_k(t) \in \mathbb{Q}[t, t^{-1}]$$

Figure-8 knot:

$$\Delta_M = t - 3 + t^{-1}$$

 $A_M = H_1(\widetilde{M}; \mathbb{Q})$ is a module over $\Lambda = \mathbb{Q}[t^{\pm 1}]$, where $\langle t \rangle$ is the covering group.

As Λ is a PID,

$$A_M = \prod_{k=0}^n \Lambda / (p_k(t))$$

Define

$$\Delta_M(t) = \prod_{k=0}^n p_k(t) \in \mathbb{Q}[t, t^{-1}]$$

Figure-8 knot:

$$\Delta_M = t - 3 + t^{-1}$$

Genus:

$$g = \min (\text{genus of } S \text{ with } \partial S = K)$$

= $\min (\text{genus of } S \text{ gen. } H_2(M, \partial M; \mathbb{Z}))$

Fundamental fact:

$$2g \geq \deg(\Delta_M)$$

Proof: Note $\deg(\Delta_M) = \dim_{\mathbb{Q}}(A_M)$. As A_M is generated by $H_1(S;\mathbb{Q}) \cong \mathbb{Q}^{2g}$, the inequality follows.

Genus:

$$g = \min (\text{genus of } S \text{ with } \partial S = K)$$

= $\min (\text{genus of } S \text{ gen. } H_2(M, \partial M; \mathbb{Z}))$

Fundamental fact:

$$2g \geq \deg(\Delta_M)$$

Proof: Note $\deg(\Delta_M)=\dim_{\mathbb{Q}}(A_M)$. As A_M is generated by $H_1(S;\mathbb{Q})\cong\mathbb{Q}^{2g}$, the inequality follows.

 $\Delta(t)$ determines g for all alternating knots and all fibered knots.

Kinoshita-Terasaka knot: $\Delta(t) = 1$ but g = 2.

Focus: Improve Δ_M by looking at $H_1(\widetilde{M};V)$ for some system V of local coefficients.

 $\Delta(t)$ determines g for all alternating knots and all fibered knots.

Kinoshita-Terasaka knot: $\Delta(t) = 1$ but g = 2.

Focus: Improve Δ_M by looking at $H_1(\widetilde{M};V)$ for some system V of local coefficients.

Assumption: *M* is hyperbolic, i.e.

$$\stackrel{\circ}{M} = \mathbb{H}^3 /_{\Gamma}$$
 for a lattice $\Gamma \leq \operatorname{Isom}^+ \mathbb{H}^3$

Thus have a faithful representation

$$\alpha$$
: $\pi_1(M) \to SL_2\mathbb{C} \le Aut(V)$ where $V = \mathbb{C}^2$.

Hyperbolic Alexander polynomial:

$$\tau_M(t) \in \mathbb{C}[t^{\pm 1}]$$
 coming from $H_1(\widetilde{M}; V_{\alpha})$.

Examples:

- Figure-8: $\tau_M = t 4 + t^{-1}$
- Kinoshita-Terasaka:

$$au_{M} \approx (4.417926 + 0.376029i)(t^{3} + t^{-3})$$

$$- (22.941644 + 4.845091i)(t^{2} + t^{-2})$$

$$+ (61.964430 + 24.097441i)(t + t^{-1})$$

$$- (-82.695420 + 43.485388i)$$

Really best to define $\tau_M(t)$ as torsion, a la Reidemeister/Milnor/Turaev.

Assumption: *M* is hyperbolic, i.e.

$$\stackrel{\circ}{M}=\mathbb{H}^3\Big/_{\Gamma}$$
 for a lattice $\Gamma\leq \mathrm{Isom}^+\,\mathbb{H}^3$

Thus have a faithful representation

$$\alpha$$
: $\pi_1(M) \to SL_2\mathbb{C} \le Aut(V)$ where $V = \mathbb{C}^2$.

Hyperbolic Alexander polynomial:

$$au_M(t) \in \mathbb{C}[t^{\pm 1}]$$
 coming from $H_1(\widetilde{M}; V_{\alpha})$.

Examples:

- Figure-8: $\tau_M = t 4 + t^{-1}$
- Kinoshita-Terasaka:

$$au_{M} \approx (4.417926 + 0.376029i)(t^{3} + t^{-3})$$

$$- (22.941644 + 4.845091i)(t^{2} + t^{-2})$$

$$+ (61.964430 + 24.097441i)(t + t^{-1})$$

$$- (-82.695420 + 43.485388i)$$

Really best to define $\tau_M(t)$ as torsion, a la Reidemeister/Milnor/Turaev.

Basic Properties:

- Can be normalized so $\tau_M(t) = \tau_M(t^{-1})$.
- Then τ_M is an actual element of $\mathbb{C}[t^{\pm 1}]$, in fact of $\mathbb{Q}(\operatorname{tr}(\Gamma))[t^{\pm 1}]$.
- $au_{\overline{M}} = \overline{ au_M(t)}$
- M amphichiral $\Rightarrow \tau_M(t) \in \mathbb{R}[t^{\pm 1}]$.
- $\tau_M(\zeta) \neq 0$ for any root of unity ζ .
- Genus bound:

$$4g - 2 \ge \deg \tau_M(t)$$

For the KT knot, g=2 and $\deg \tau_M(t)=3$ so this is sharp, unlike with Δ_M .

Knots by the numbers:

Basic Properties:

- Can be normalized so $\tau_M(t) = \tau_M(t^{-1})$.
- Then τ_M is an actual element of $\mathbb{C}[t^{\pm 1}]$, in fact of $\mathbb{Q}(\operatorname{tr}(\Gamma))[t^{\pm 1}]$.
- $au_{\overline{M}} = \overline{ au_M(t)}$
- M amphichiral $\Rightarrow \tau_M(t) \in \mathbb{R}[t^{\pm 1}]$.
- $\tau_M(\zeta) \neq 0$ for any root of unity ζ .
- Genus bound:

$$4g - 2 \ge \deg \tau_M(t)$$

For the KT knot, g=2 and $\deg \tau_M(t)=3$ so this is sharp, unlike with Δ_M .

313,231 number of prime knots with at most 15 crossings. [HTW 98]

8,834 number where $2g > \deg(\Delta_M)$.

22 number which are non-hyperbolic.

Basic Properties:

- Can be normalized so $\tau_M(t) = \tau_M(t^{-1})$.
- Then τ_M is an actual element of $\mathbb{C}[t^{\pm 1}]$, in fact of $\mathbb{Q}(\operatorname{tr}(\Gamma))[t^{\pm 1}]$.
- $au_{\overline{M}} = \overline{ au_M(t)}$
- M amphichiral $\Rightarrow \tau_M(t) \in \mathbb{R}[t^{\pm 1}]$.
- $\tau_M(\zeta) \neq 0$ for any root of unity ζ .
- Genus bound:

$$4g - 2 \ge \deg \tau_M(t)$$

For the KT knot, g=2 and $\deg \tau_M(t)=3$ so this is sharp, unlike with Δ_M .

Knots by the numbers:

313,231 number of prime knots with at most 15 crossings. [HTW 98]

8,834 number where $2g > \deg(\Delta_M)$.

22 number which are non-hyperbolic.

0 number where $4g - 2 > \deg(\tau_M)$.

Conj. τ_M determines the genus for any hyperbolic knot in S^3 .

Computing τ_M : Approximate $\pi_1(M) \to SL_2\mathbb{C}$ to 250 digits by solving the gluing equations associated to some ideal triangulation of M to high precision.

Knots by the numbers:

- 313,231 number of prime knots with at most 15 crossings. [HTW 98]
 - 8,834 number where $2g > \deg(\Delta_M)$.
 - 22 number which are non-hyperbolic.
 - 0 number where $4g 2 > \deg(\tau_M)$.

Conj. τ_M determines the genus for any hyperbolic knot in S^3 .

Computing τ_M : Approximate $\pi_1(M) \to SL_2\mathbb{C}$ to 250 digits by solving the gluing equations associated to some ideal triangulation of M to high precision.

Many properties of M^3 are algorithmically computable, including

[Haken 1961] Whether a knot K in S^3 is unknotted. More generally, can find the genus of K.

[Jaco-Oertel 1984] Whether M contains an incompressible surface.

[Rubinstein-Thompson 1995] Whether M is S^3 .

[Haken-Hemion-Matveev] Whether two Haken 3-manifolds are homeomorphic.

All of these plus Perelman, Thurston, Casson-Manning, Epstein et. al., Hodgson-Weeks, and others give:

Thm. There is an algorithm to determine if two compact 3-manifolds are homeomorphic.

Many properties of M^3 are algorithmically computable, including

[Haken 1961] Whether a knot K in S^3 is unknotted. More generally, can find the genus of K.

[Jaco-Oertel 1984] Whether M contains an incompressible surface.

[Rubinstein-Thompson 1995] Whether M is S^3 .

[Haken-Hemion-Matveev] Whether two Haken 3-manifolds are homeomorphic.

All of these plus Perelman, Thurston, Casson-Manning, Epstein et. al., Hodgson-Weeks, and others give:

Thm. There is an algorithm to determine if two compact 3-manifolds are homeomorphic.

Normal surfaces meet each tetrahedra in a triangulation \mathcal{T} of M in a standard way:

and correspond to certain lattice points in a finite polyhedral cone in \mathbb{R}^{7t} where $t = \#\mathcal{T}$:

Normal surfaces meet each tetrahedra in a triangulation \mathcal{T} of M in a standard way:

and correspond to certain lattice points in a finite polyhedral cone in \mathbb{R}^{7t} where $t = \#\mathcal{T}$:

Meta Thm. In an interesting class of surfaces, there is one which is normal. Moreover, one lies on a vertex ray of the cone.

E.g. The class of minimal genus surfaces whose boundary is a given knot.

Problem: There can be exponentially many vertex rays, typically $\approx O(1.6^t)$ [Burton 2009]. In practice, limited to t < 40.

[Agol-Hass-Thurston 2002] Whether the genus of a knot $K \subset M^3$ is $\leq g$ is NP-complete.

[Agol 2002] When $M = S^3$ the previous question is in co-NP.

Meta Thm. In an interesting class of surfaces, there is one which is normal. Moreover, one lies on a vertex ray of the cone.

E.g. The class of minimal genus surfaces whose boundary is a given knot.

Problem: There can be exponentially many vertex rays, typically $\approx O(1.6^t)$ [Burton 2009]. In practice, limited to t < 40.

[Agol-Hass-Thurston 2002] Whether the genus of a knot $K \subset M^3$ is $\leq g$ is NP-complete.

[Agol 2002] When $M = S^3$ the previous question is in co-NP.

Practical Trick: Finding the simplest surface representing some $\phi \in H^1(M; \mathbb{Z}) \cong H_2(M, \partial M; \mathbb{Z})$.

Take a triangulation with only one vertex (cf. Jaco-Rubinstein, Casson). Then ϕ comes from a unique 1-cocycle, which realizes ϕ as a piecewise affine map $M \to S^1$.

Power of randomization: Trying several different \mathcal{T} usually yields the minimal genus surface.

Practical Trick: Finding the simplest surface representing some $\phi \in H^1(M; \mathbb{Z}) \cong H_2(M, \partial M; \mathbb{Z})$.

Take a triangulation with only one vertex (cf. Jaco-Rubinstein, Casson). Then ϕ comes from a unique 1-cocycle, which realizes ϕ as a piecewise affine map $M \to S^1$.

Power of randomization: Trying several different \mathcal{T} usually yields the minimal genus surface.

Basic Fact: If M fibers over the circle then τ_M is monic, i.e. lead coefficient ± 1 .

Current focus: For 15 crossing knots, does τ_M determine whether M fibers?

By Gabai can reduce to the case of *closed* manifolds.

Practical Trick: Proving that $N = M \setminus \Sigma$ is $\Sigma \times I$.

Start with a presentation for $\pi_1(N)$ coming from a triangulation, and then simplify that it using Tietze transformations. With luck (i.e. randomization), one gets a one-relator presentation of a surface group. This gives $N \cong \Sigma \times I$ by [Stallings 1960].

Basic Fact: If M fibers over the circle then τ_M is monic, i.e. lead coefficient ± 1 .

Current focus: For 15 crossing knots, does τ_M determine whether M fibers?

By Gabai can reduce to the case of *closed* manifolds.

Practical Trick: Proving that $N = M \setminus \Sigma$ is $\Sigma \times I$.

Start with a presentation for $\pi_1(N)$ coming from a triangulation, and then simplify that it using Tietze transformations. With luck (i.e. randomization), one gets a one-relator presentation of a surface group. This gives $N\cong\Sigma\times I$ by [Stallings 1960].

[Dunfield-Ramakrishnan 2008] Used this when $|\mathcal{T}| > 130$.

General approach uses Jaco-Rubinstein "crushing". Compare [Burton-Rubinstein-Tillmann 2009].

Future work: Considering τ_M as a function on the character variety.

Generic goals:

- Explain why genus bounds of τ_M are as good as those of Δ_M .
- Use ideal points associated to Seifert surfaces to show nonfibered implies τ_M is non-monic.
- Genus info?

[Dunfield-Ramakrishnan 2008] Used this when $|\mathcal{T}| > 130$.

General approach uses Jaco-Rubinstein "crushing". Compare [Burton-Rubinstein-Tillmann 2009].

Future work: Considering τ_M as a function on the character variety.

Generic goals:

- Explain why genus bounds of τ_M are as good as those of Δ_M .
- Use ideal points associated to Seifert surfaces to show nonfibered implies τ_M is non-monic.
- Genus info?

Happy Birthday

Bus!