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Setup:
e Knot: K =S - §3
e Exterior: M = §3 —]%(K)

.

A basic and fundamental invariant of K its
Alexander polynomial (192 3):

Ag(t) = Ay (1) € Z[t,t71]



Universal cyclic cover: corresponds to the kernel

of the unique epimorphism (M) — Z.

Setup:
e Knot: K =S - §3
e Exterior: M = S3 — ](\DI(K)

.

A basic and fundamental invariant of K its
Alexander polynomial (192 3):

Ak (t) = Ay (1) € Z[t,t71]




Universal cyclic cover: corresponds to the kernel

of the unique epimorphism (M) — Z.

Ay = H{(M;Q) is a module over A = Q[t*1],
where (t) is the covering group.

As A is a PID,

Av =TT ()
k=0

Define

Ay () = | | pre(0) € Q[et,t71]

k=0

Figure-8 knot:

Ay=t-3+t1




Ay = Hl(ﬁ;Q) is a module over A =
where (t) is the covering group.

Q[t*1],

As A is a PID,

[l A o)

Define

[Tri®) € Qlt,t71]

k=0

Ay (T) =

Figure-8 knot:

Ay=t-3+t1!

Genus:

g = min (genus of S with 05 = K)
= min (genus of S gen. H,(M,0M; 7))

Fundamental fact:

2g = deg(Ay)

As A, is
Q29, the inequality fol-

Proof: Note deg(A,) = dimg(Ay).
generated by H;(S5;Q)
lows.

112



A(t) determines g for all alternating knots and
all fibered knots.

Genus:

Kinoshita-Terasaka knot: A(t) = 1 but g = 2.
g = min (genus of S with oS = K)

= min (genus of S gen. H,(M,0M;7))

Fundamental fact: ‘\/(\3

2g > deg(Ay) /
Proof: Note deg(Ay) = dimg(Ay). As Ay is \)
generated by H;(S; Q) = Q29, the inequality fol-

lows.

112

Focus: Improve A, by looking at Hl(M;V) for
some system V of local coefficients.



Assumption: M is hyperbolic, i.e.

A(t) determines g for all alternating knots and

M = H3/r for a lattice T' < Isom™ H?
all fibered knots.

Thus have a faithful representation

Kinoshita-Terasaka knot: A(t) = 1 but g = 2. o: (M) — SL,C < Aut(V) where V = C2.

Hyperbolic Alexander polynomial:
( Ty (1) € C[t*1] coming from Hy(M;V,).
/ \ Examples:
‘\/-\ e Figure-8: Ty =t -4 +t1
e Kinoshita-Terasaka:
\) Ty ~ (8417926 + 0.3760290) (3 + t~3)

—(22.941644 + 4.845091i) (t%2 + t~2)
+(61.964430 + 24.097441i) (t + t™1)

Focus: Improve A, by looking at Hy(M;V) for — (—82.695420 + 43.485388i)

some system V' of local coefficients. Really best to define T,,(t) as torsion, a la Reide-

meister/Milnor/Turaev.



Assumption: M is hyperbolic, i.e.

M = H3/1“ for a lattice T' < Isom™ H?
Thus have a faithful representation
x: 1y (M) — SL,C < Aut(V)
Hyperbolic Alexander polynomial:
Ty (1) € C[t*1] coming from Hy(M;V,).
Examples:

e Figure-8: 1)y =t -4+t

e Kinoshita-Terasaka:

Ty ~(4.417926 + 0.376029i) (t3 + t73)

—(22.941644 + 4.845091i) (t%2 + t2)
+(61.964430 + 24.0974410) (t + t™1)

— (—82.695420 + 43.485388i)

Really best to define T,,(t) as torsion, a la Reide-

meister/Milnor/Turaev.

where V = C2.

Basic Properties:

Can be normalized so T, (t) = Ty (t71).

Then T, is an actual element of C[t*!], in
fact of Q(tr(I'))[t*1].

Ty = Ty (1)
M amphichiral = T,,(t) € R[t*1].
Ty (C) # O for any root of unity C.

Genus bound:

Ag — 2 = deg Ty (D)

For the KT knot, g = 2 and deg Ty, (t) = 3 so
this is sharp, unlike with A,,.



Knots by the numbers:

Basic Properties: 313,231 number of prime knots with
t t15 ings. [HTW 98
e Can be normalized so Ty, (t) = T (t71). at mos crossings. | ]

e Then Ty, is an actual element of C[t*!], in 8,834 number where 2g > deg(AM).

fact of Q(tr(I))[t*1].
22 number which are non-hyperbolic.

o T3 = Tp(L)
e M amphichiral = T,,(t) € R[t*1].
e T)(C) # O for any root of unity C.

e Genus bound:

Ag — 2 = deg Ty (D)

For the KT knot, g = 2 and deg Ty, (t) = 3 so
this is sharp, unlike with A,,.
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Then T, is an actual element of C[t*!], in
fact of Q(tr(I'))[t*1].

Ty = Ty (D)
M amphichiral = T,,(t) € R[t*1].
Ty (C) # O for any root of unity C.

Genus bound:

Ag — 2 = deg Ty (D)

For the KT knot, g = 2 and deg Ty, (t) = 3 so
this is sharp, unlike with A,,.

Knots by the numbers:

313,231 number of prime knots with
at most 15 crossings. [HTW 98]

8,834 number where 2g > deg(Ay).
22 number which are non-hyperbolic.

0 number where 4g — 2 > deg(Ty).

Conj. 1), determines the genus for any hyper-
bolic knot in S3.

Computing Ty, Approximate 11y (M) — SL,C to
250 digits by solving the gluing equations asso-
ciated to some ideal triangulation of M to high
precision.



Knots by the numbers:

313,231 number of prime knots with
at most 15 crossings. [HTW 98]
8,834 number where 2g > deg(Ay).

22 number which are non-hyperbolic.

0 number where 4g — 2 > deg(Ty).
Conj. 1), determines the genus for any hyper-
bolic knot in S3.

Computing Ty, Approximate 11y (M) — SL,C to
250 digits by solving the gluing equations asso-
ciated to some ideal triangulation of M to high
precision.

Many properties of M3 are algorithmically com-
putable, including

[Haken 1961] Whether a knot K in S3 is unknot-
ted. More generally, can find the genus of K.

[Jaco-Oertel 1984] Whether M contains an incom-
pressible surface.

[Rubinstein-Thompson 1995] Whether M is S3.

[Haken-Hemion-Matveev] Whether two Haken 3-
manifolds are homeomorphic.

All of these plus Perelman, Thurston, Casson-
Manning, Epstein et. al., Hodgson-Weeks, and oth-
ers give:

Thm. There is an algorithm to determine if two
compact 3-manifolds are homeomorphic.



Many properties of M3 are algorithmically com- Normal surfaces meet each tetrahedra in a trian-
putable, including gulation 7 of M in a standard way:

[Haken 1961] Whether a knot K in S3 is unknot-
ted. More generally, can find the genus of K.

[Jaco-Oertel 1984] Whether M contains an incom-

pressible surface.
and correspond to certain lattice points in a finite

olyhedral cone in R?t where t = #7T :
[Rubinstein-Thompson 1995] Whether M is S3. POLY

&
[Haken-Hemion-Matveev] Whether two Haken 3- )Ek
manifolds are homeomorphic. ?
%
All of these plus Perelman, Thurston, Casson-
Manning, Epstein et. al., Hodgson-Weeks, and oth-
ers give:

Thm. There is an algorithm to determine if two

compact 3-manifolds are homeomorphic.



Normal surfaces meet each tetrahedra in a trian-
gulation 7 of M in a standard way:

and correspond to certain lattice points in a finite
polyhedral cone in R’ where t = #7 :

A
%
|
%,

Meta Thm. In an interesting class of surfaces,
there is one which is normal. Moreover, one lies
on a vertex ray of the cone.

E.g. The class of minimal genus surfaces whose
boundary is a given knot.

Problem: There can be exponentially many ver-
tex rays, typically = O(1.6') [Burton 2009]. In
practice, limited to t < 40.

[Agol-Hass-Thurston 2002] Whether the genus of
a knot K ¢ M3 is < g is NP-complete.

[Agol 2002] When M = S3 the previous question
is in co-NP.



Meta Thm. In an interesting class of surfaces,
there is one which is normal. Moreover, one lies
on a vertex ray of the cone.

E.g. The class of minimal genus surfaces whose
boundary is a given knot.

Problem: There can be exponentially many ver-
tex rays, typically = O(1.6') [Burton 2009]. In
practice, limited to t < 40.

[Agol-Hass-Thurston 2002] Whether the genus of
a knot K ¢ M3 is < g is NP-complete.
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Practical Trick: Finding the simplest surface rep-
resenting some ¢ € H'(M;7) = H,(M,0M;7).

Take a triangulation with only one vertex (cf. Jaco-
Rubinstein, Casson). Then ¢ comes from a unique
1-cocycle, which realizes ¢ as a piecewise affine

map M — S1.

Power of randomization: Trying several differ-
ent 7 usually yields the minimal genus surface.



Practical Trick: Finding the simplest surface rep-

resenting some ¢ € H(M;Z) = H,(M,dM;Z). Basic Fact: If M fibers over the circle then Ty, is
monic, i.e. lead coefficient +1.

Take a triangulation with only one vertex (cf. Jaco-

Rubinstein, Casson). Then ¢ comes from a unique ~ Current focus: For 15 crossing knots, does Ty

1-cocycle, which realizes ¢ as a piecewise affine  determine whether M fibers:

map M — S1.
By Gabai can reduce to the case of closed mani-
folds.

Practical Trick: Proving that N = M \ X is 3 X I.

Start with a presentation for 17y (IN) coming from
a triangulation, and then simplify that it using

Tietze transformations. With luck (i.e. random-
ization), one gets a one-relator presentation of a
surface group. This gives N = 3 x I by [Stallings

Power of randomization: Trying several differ- 1960]

ent 7 usually yields the minimal genus surface.



Basic Fact: If M fibers over the circle then Ty, is
monic, i.e. lead coefficient +1.

Current focus: For 15 crossing knots, does Ty,
determine whether M fibers?

By Gabai can reduce to the case of closed mani-
folds.

Practical Trick: Proving that N = M \ X is 3 X I.

Start with a presentation for 17y (IN) coming from
a triangulation, and then simplify that it using
Tietze transformations. With luck (i.e. random-
ization), one gets a one-relator presentation of a
surface group. This gives N = 3 x I by [Stallings
1960].

[Dunfield-Ramakrishnan 2008] Used this when
7| > 130.

General approach uses Jaco-Rubinstein “crushing”.
Compare [Burton-Rubinstein-Tillmann 2009].

Future work: Considering T, as a function on the

character variety.

Generic goals:

e Explain why genus bounds of T,; are as good
as those of Ay,.

e Use ideal points associated to Seifert sur-
faces to show nonfibered implies T, is non-

monic.

e Genus info?
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