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A basic and fundamental invariant of K its

Alexander polynomial (1923):

∆K(t) = ∆M(t) ∈ Z[t, t−1]



Setup:

• Knot: K = S1 ↩ S3

• Exterior: M = S3 −N◦(K)

A basic and fundamental invariant of K its

Alexander polynomial (1923):

∆K(t) = ∆M(t) ∈ Z[t, t−1]

Universal cyclic cover: corresponds to the kernel

of the unique epimorphism π1(M)→ Z.

M̃

M

S

S



Universal cyclic cover: corresponds to the kernel

of the unique epimorphism π1(M)→ Z.

M̃

M

S

S

AM = H1(M̃ ;Q) is a module over Λ = Q[t±1],
where 〈t〉 is the covering group.

As Λ is a PID,

AM =
n∏

k=0

Λ
/(
pk(t)

)

Define

∆M(t) =
n∏

k=0
pk(t) ∈ Q[t, t−1]

Figure-8 knot:

∆M = t − 3+ t−1
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some system V of local coefficients.

Assumption: M is hyperbolic, i.e.

M
◦ = H3/

Γ for a lattice Γ ≤ Isom+H3

Thus have a faithful representation

α : π1(M)→ SL2C ≤ Aut(V) where V = C2.

Hyperbolic Alexander polynomial:

τM(t) ∈ C
[
t±1] coming from H1(M̃ ;Vα).

Examples:

• Figure-8: τM = t − 4+ t−1

• Kinoshita-Terasaka:

τM ≈(4.417926+ 0.376029i)(t3 + t−3)

− (22.941644+ 4.845091i)(t2 + t−2)

+ (61.964430+ 24.097441i)(t + t−1)

− (−82.695420+ 43.485388i)

Really best to define τM(t) as torsion, a la Reide-

meister/Milnor/Turaev.
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Basic Properties:

• Can be normalized so τM(t) = τM(t−1).

• Then τM is an actual element of C[t±1], in

fact of Q
(
tr(Γ)

)
[t±1].

• τM = τM(t)
• M amphichiral ⇒ τM(t) ∈ R[t±1].

• τM(ζ) ≠ 0 for any root of unity ζ.

• Genus bound:

4g − 2 ≥ degτM(t)

For the KT knot, g = 2 and degτM(t) = 3 so

this is sharp, unlike with ∆M.
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Knots by the numbers:

313,231 number of prime knots with
at most 15 crossings. [HTW 98]

8,834 number where 2g > deg(∆M).

22 number which are non-hyperbolic.

0 number where 4g − 2 > deg(τM).

Conj. τM determines the genus for any hyper-

bolic knot in S3.

Computing τM: Approximate π1(M) → SL2C to

250 digits by solving the gluing equations asso-

ciated to some ideal triangulation of M to high

precision.
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Many properties of M3 are algorithmically com-

putable, including

[Haken 1961] Whether a knot K in S3 is unknot-

ted. More generally, can find the genus of K.

[Jaco-Oertel 1984] WhetherM contains an incom-

pressible surface.

[Rubinstein-Thompson 1995] Whether M is S3.

[Haken-Hemion-Matveev] Whether two Haken 3-

manifolds are homeomorphic.

All of these plus Perelman, Thurston, Casson-

Manning, Epstein et. al., Hodgson-Weeks, and oth-

ers give:

Thm. There is an algorithm to determine if two

compact 3-manifolds are homeomorphic.
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Normal surfaces meet each tetrahedra in a trian-

gulation T of M in a standard way:

and correspond to certain lattice points in a finite

polyhedral cone in R7t where t = #T :
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Meta Thm. In an interesting class of surfaces,

there is one which is normal. Moreover, one lies

on a vertex ray of the cone.

E.g. The class of minimal genus surfaces whose

boundary is a given knot.

Problem: There can be exponentially many ver-

tex rays, typically ≈ O(1.6t) [Burton 2009]. In

practice, limited to t < 40.

[Agol-Hass-Thurston 2002] Whether the genus of

a knot K ⊂ M3 is ≤ g is NP-complete.

[Agol 2002] When M = S3 the previous question

is in co-NP.



Meta Thm. In an interesting class of surfaces,

there is one which is normal. Moreover, one lies

on a vertex ray of the cone.

E.g. The class of minimal genus surfaces whose

boundary is a given knot.

Problem: There can be exponentially many ver-

tex rays, typically ≈ O(1.6t) [Burton 2009]. In

practice, limited to t < 40.

[Agol-Hass-Thurston 2002] Whether the genus of

a knot K ⊂ M3 is ≤ g is NP-complete.

[Agol 2002] When M = S3 the previous question

is in co-NP.

Practical Trick: Finding the simplest surface rep-

resenting some φ ∈ H1(M ;Z) � H2(M, ∂M ;Z).

Take a triangulation with only one vertex (cf. Jaco-

Rubinstein, Casson). Thenφ comes from a unique

1-cocycle, which realizes φ as a piecewise affine

map M → S1.

Power of randomization: Trying several differ-

ent T usually yields the minimal genus surface.
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Basic Fact: If M fibers over the circle then τM is

monic, i.e. lead coefficient ±1.

Current focus: For 15 crossing knots, does τM
determine whether M fibers?

By Gabai can reduce to the case of closed mani-

folds.

Practical Trick: Proving that N = M \ Σ is Σ× I.

Start with a presentation for π1(N) coming from

a triangulation, and then simplify that it using

Tietze transformations. With luck (i.e. random-

ization), one gets a one-relator presentation of a

surface group. This gives N � Σ× I by [Stallings

1960].
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[Dunfield-Ramakrishnan 2008] Used this when

|T | > 130.

General approach uses Jaco-Rubinstein “crushing”.

Compare [Burton-Rubinstein-Tillmann 2009].

Future work: Considering τM as a function on the

character variety.

Generic goals:

• Explain why genus bounds of τM are as good

as those of ∆M.

• Use ideal points associated to Seifert sur-

faces to show nonfibered implies τM is non-

monic.

• Genus info?
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