Harmonic 1-forms on hyperbolic 3-manifolds: connections and computations

Nathan M. Dunfield
University of Illinois
joint with Anil N. Hirani

Slides posted at:
https://dunfield.info/slides/msri2020.pdf

Conv: M^{3} closed orient. hyperbolic

Conj [Bergeron-Venkatesh, Lê, Lück]
For a tower of congruence covers
$M=M_{0} \leftarrow M_{1} \leftarrow M_{2} \leftarrow M_{3} \leftarrow M_{4} \leftarrow \cdots$
where M is arithmetic and $\operatorname{inj} M_{n} \rightarrow \infty$, one has:

$$
\lim _{n \rightarrow \infty} \frac{\log \left|H_{1}\left(M_{n} ; \mathbb{Z}\right)_{\text {tor }}\right|}{\operatorname{vol}\left(M_{n}\right)}=\frac{1}{6 \pi}
$$

Qs. Evidence? Why? What if M is not arithmetic?

Ray-Singer analytic torsion:

$$
\tau(N)=\frac{1}{2} \sum_{k=0}^{\operatorname{dim} N}(-1)^{k} \cdot k \cdot \log \left(\operatorname{det}^{\prime}\left(\Delta_{k}\right)\right)
$$

[Cheeger-Müller] For N^{3}, τ is:
$\log (\operatorname{tor}(N))-\log (\operatorname{vol}(N))+2 \log \left(R^{1}(N)\right)$
where $\operatorname{tor}(N)=\left|H_{1}(N ; \mathbb{Z})_{\text {tor }}\right|$ and

$$
R^{1}(N)=\operatorname{vol}\left(H^{1}(N ; \mathbb{R}) / H^{1}(N ; \mathbb{Z})\right)
$$

and the volume form comes from $\|\cdot\|_{L^{2}}$ on $H^{1}(N ; \mathbb{R})$.

Suppose M_{n} is a tower of cong. covers of M with $\operatorname{inj} M_{n} \rightarrow \infty$.

Conj 1: Whether or not M is arith:
$\tau\left(M_{n}\right) / \operatorname{vol}\left(M_{n}\right) \rightarrow \tau^{(2)}\left(\mathbb{H}^{3}\right)=\frac{1}{6 \pi}$.
Conj 2: When M is cong. arith $R^{1}\left(M_{n}\right) \leq \operatorname{vol}\left(M_{n}\right)^{C}$ where $C=C(M)$.

If both hold, then $\frac{\log \left(\operatorname{tor}\left(M_{n}\right)\right)}{\operatorname{vol}\left(M_{n}\right)} \rightarrow \frac{1}{6 \pi}$
[Brock-D] $\exists M_{n} \xrightarrow{B S} \mathbb{H}^{3}$ with all $H_{1}\left(M_{n} ; \mathbb{Z}\right)=0$ so $\tau\left(M_{n}\right) / \operatorname{vol}\left(M_{n}\right) \rightarrow 0$.
[Brock-D] $\exists M_{n}$ with vol $\left(M_{n}\right) \rightarrow \infty$, $\operatorname{inj}\left(M_{n}\right) \geq \epsilon>0$ and $R^{1}(M) \geq C^{\operatorname{vol}(M)}$ for some $C>1$.

Harmonic norm:

$\langle\alpha, \beta\rangle=\int_{M} \alpha \wedge * \beta$ for $\alpha, \beta \in \Omega^{1}(M)$.
$\phi \in H^{1}(M ; \mathbb{R})$ has a unique harmonic rep. minimizing $\|\alpha\|_{L^{2}}=\sqrt{\langle\alpha, \alpha\rangle}$.

So $H^{1}(M ; \mathbb{R}) \cong \operatorname{ker}\left(\Delta_{1}\right)$ inherits $\|\cdot\|_{L^{2}}$.

$$
\mathbb{H}^{2}=\{r<1\}
$$

$$
g_{\mathbb{H}^{2}}=\frac{4}{\left(1-r^{2}\right)^{2}} g_{\mathbb{E}^{2}}
$$

The Poincaré dual α of a has $\|\alpha\|_{L^{2}} \approx 1.37052$.

The Poincaré dual β of b has $\|\beta\|_{L^{2}} \approx 0.74239$

Input: Dirichlet domain D for M with face pairings in Isom ${ }^{+}\left(\mathbb{H}^{3}\right)$ and $c \in C_{2}(\bar{D} ; \mathbb{Z})$.

Output: Approx for the harmonic α dual to [c].

Method of particular solutions

[Moler-Payne 1968; Betcke-Trefethen 2005; Barnett 2009; Strohmaier-Uski 2013]

Idea: Have $\widetilde{\alpha}=\pi^{-1}(\alpha)=d f$ on \mathbb{H}^{3}. Expand about the center of D in a basis $\Phi_{\ell m}$ for harmonic functions:

$$
f=\sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} \Phi_{\ell m}
$$

Truncate ($\ell \leq L$) and use matching conditions on ∂D to solve for $a_{\ell m}$.
[D-Hirani] If \bar{f} on \mathbb{H}^{3} is harm, then

$$
\|\widetilde{\alpha}-d \bar{f}\|_{L^{2}(D)} \leq 2\left(1+\frac{1}{\lambda_{1}^{0}(M)}\right) E(\bar{f})
$$

where $E(\bar{f})$ measures the failure of $d \bar{f}$ to be equivariant.

Sample: $24,735 \mathrm{mflds}$ with $b_{1}=1$; vol $\in[3.1,24.6]$ and $\operatorname{inj} \in[0.15,0.89]$. Computed $\|\phi\|_{L^{2}}$ for a gen ϕ of $H^{1}(M ; \mathbb{Z})$ using $\ell \leq 50$ (2600 terms).
Ex: $M=m 160(3,1)=\operatorname{Map}\left(S_{2}: \operatorname{aabCDE}\right)$ has vol $(M) \approx 3.16633332124$ and $\|\phi\|_{L^{2}} \approx 3.646480936437$ and $\tau(M) \approx 2.5335632022$.

[Brock-D 2017; BŞV 2016] $\frac{\pi}{\sqrt{\operatorname{vol}(N)}}\|\cdot\|_{T h} \leq\|\cdot\|_{L^{2}} \leq \frac{10 \pi}{\sqrt{\operatorname{inj}(N)}}\|\cdot\|_{T h}$

[X. Han 2020] $\frac{\pi}{\sqrt{\operatorname{vol}(N)}}\|\cdot\|_{T h}<\|\cdot\|_{L^{2}}$ and generalized both to finite-vol.

