The Least Spanning Area of a Knot and the Optimal Bounding Chain Problem

Nathan M. Dunfield University of Illinois, Mathematics

Anil N. Hirani University of Illinois, Computer Science

SoCG 2011, Paris

The Least Spanning Area of a Knot and the Optimal Bounding Chain Problem

Nathan M. Dunfield
University of Illinois, Mathematics

Anil N. Hirani
University of Illinois, Computer Science

SoCG 2011, Paris

Knot in \mathbb{R}^3 : Smooth embedding of S^1 in \mathbb{R}^3 .

Spanning surface: Any knot in \mathbb{R}^3 is the boundary of a smooth orientable embedded surface S.

Knot Genus: What is the least genus of such an

Least Spanning Area: What is the least area of such an *S*?

Both questions are decidable [Haken 1960, Sullivan 1990].

The Least Spanning Area of a Knot and the Optimal Bounding Chain Problem

Nathan M. Dunfield
University of Illinois, Mathematics

Anil N. Hirani
University of Illinois, Computer Science

SoCG 2011, Paris

Knot in \mathbb{R}^3 : Smooth embedding of S^1 in \mathbb{R}^3 .

Spanning surface: Any knot in \mathbb{R}^3 is the boundary of a smooth orientable embedded surface S.

Knot Genus: What is the least genus of such an

Least Spanning Area: What is the least area of such an *S*?

Both questions are decidable [Haken 1960, Sullivan 1990].

Knot in \mathbb{R}^3 : Smooth embedding of S^1 in \mathbb{R}^3 .

Spanning surface: Any knot in \mathbb{R}^3 is the boundary of a smooth orientable embedded surface S.

Knot Genus: What is the least genus of such an

Least Spanning Area: What is the least area of such an *S*?

Both questions are decidable [Haken 1960, Sullivan 1990].

More generally, consider a closed orientable 3-manifold Y containing a knot K.

- Y is given as a simplicial complex \mathcal{T} with areas (in \mathbb{N}) assigned to each 2-simplex.
- K is a loop of edges in \mathcal{T} .
- Consider spanning surfaces which are "made out of" 2-simplices of \mathcal{T} .

Agol-Hass-Thurston (2002) For general Y the Knot Genus and Least Spanning Area problems are **NP**-hard.

Thm (D-H) When $H_2(Y;\mathbb{Z}) = 0$, e.g. $Y = S^3$, Least Spanning Area can be solved in polynomial time.

Conj When $H_2(Y;\mathbb{Z}) = 0$, Knot Genus can be solved in polynomial time.

More generally, consider a closed orientable 3-manifold Y containing a knot K.

- Y is given as a simplicial complex \mathcal{T} with areas (in \mathbb{N}) assigned to each 2-simplex.
- K is a loop of edges in \mathcal{T} .
- Consider spanning surfaces which are "made out of" 2-simplices of \mathcal{T} .

Agol-Hass-Thurston (2002) For general Y the Knot Genus and Least Spanning Area problems are **NP**-hard.

Thm (D-H) When $H_2(Y;\mathbb{Z}) = 0$, e.g. $Y = S^3$, Least Spanning Area can be solved in polynomial time.

Conj When $H_2(Y;\mathbb{Z}) = 0$, Knot Genus can be solved in polynomial time.

Algorithm uses linear programming.

Algorithm uses linear programming.

Thm (D-H) When $H_2(Y;\mathbb{Z}) = 0$, e.g. $Y = S^3$, Least Spanning Area can be solved in polynomial time.

Approach:

- 1. Consider the related Optimal Bounding Chain Problem, where S is a union of 2-simplices of \mathcal{T} but perhaps not a surface.
- 2. Reduce to an instance of the Optimal Homologous Chain Problem that can be solved in polynomial time by [Dey-H-Krishnamoorthy 2010].
- 3. Desingularize the result using two topological tools.

Thm (D-H) When $H_2(Y;\mathbb{Z}) = 0$, e.g. $Y = S^3$, Least Spanning Area can be solved in polynomial time.

Approach:

- 1. Consider the related Optimal Bounding Chain Problem, where S is a union of 2-simplices of \mathcal{T} but perhaps not a surface.
- 2. Reduce to an instance of the Optimal Homologous Chain Problem that can be solved in polynomial time by [Dey-H-Krishnamoorthy 2010].
- 3. Desingularize the result using two topological tools.

Homology: X a finite simplicial complex, with $C_n(X;\mathbb{Z})$ the free abelian group with basis the n-simplices of X.

Boundary map: ∂_n : $C_n(X; \mathbb{Z}) \to C_{n-1}(X; \mathbb{Z})$ Homology:

$$H_n(X; \mathbb{Z}) = \frac{\ker(\partial_n) / \operatorname{image}(\partial_{n-1})}{\{\operatorname{boundaries of } (n+1) - \operatorname{dim things} \}}$$

Example: $H_1(torus) = \mathbb{Z}^2$.

Homology: X a finite simplicial complex, with $C_n(X;\mathbb{Z})$ the free abelian group with basis the n-simplices of X.

Boundary map: $\partial_n: C_n(X; \mathbb{Z}) \to C_{n-1}(X; \mathbb{Z})$ Homology:

$$H_n(X; \mathbb{Z}) = \frac{\ker(\partial_n)}{\inf\{\text{boundaries of } (n+1)\text{-dim things}\}}$$

Example: $H_1(torus) = \mathbb{Z}^2$.

A knot K in an orientable 3-manifold Y gives an element of $H_1(Y;\mathbb{Z})$; when this is zero, K has a spanning surface by Poincaré-Lefschetz duality. Thus if $H_1(Y;\mathbb{Z}) = 0$, e.g. $Y = S^3$ or \mathbb{R}^3 , then every knot has a spanning surface.

Assign a "volume" to each n-simplex in X, which gives $C_n(X;\mathbb{Z})$ an ℓ^1 -norm.

Optimal Homologous Chain Problem (OHCP)

Given $a \in C_n(X; \mathbb{Z})$ find $c = a + \partial_{n+1}x$ with $||c||_1$ minimal.

Optimal Bounding Chain Problem (OBCP)

Given $b \in C_{n-1}(X; \mathbb{Z})$ which is 0 in $H_{n-1}(X; \mathbb{Z})$, find $c \in C_n(X; \mathbb{Z})$ with $b = \partial_n c$ and $||c||_1$ minimal.

A knot K in an orientable 3-manifold Y gives an element of $H_1(Y;\mathbb{Z})$; when this is zero, K has a spanning surface by Poincaré-Lefschetz duality. Thus if $H_1(Y;\mathbb{Z}) = 0$, e.g. $Y = S^3$ or \mathbb{R}^3 , then every knot has a spanning surface.

Assign a "volume" to each n-simplex in X, which gives $C_n(X; \mathbb{Z})$ an ℓ^1 -norm.

Optimal Homologous Chain Problem (OHCP)

Given $a \in C_n(X; \mathbb{Z})$ find $c = a + \partial_{n+1}x$ with $||c||_1$ minimal.

Optimal Bounding Chain Problem (OBCP)

Given $b \in C_{n-1}(X; \mathbb{Z})$ which is 0 in $H_{n-1}(X; \mathbb{Z})$, find $c \in C_n(X; \mathbb{Z})$ with $b = \partial_n c$ and $||c||_1$ minimal.

Thm (D-H) Both OHCP and OBCP are NP-hard.

OHCP with mod 2 coefficients is **NP**-complete by [Chen-Freedman 2010].

Dey-H-Krishnamoorthy (2010) When X is relatively torsion free in dimension n, then the OHCP for $C_n(X;\mathbb{Z})$ can be solved in polynomial time.

Key: Applies when X is an orientable n + 1 manifold.

Thm (D-H) When X is relatively torsion free in dimension n and $H_n(X;\mathbb{Z}) = 0$, then the OBCP for $C_{n-1}(X;\mathbb{Z})$ can be solved in polynomial time.

Compare

Thm (D-H) When $H_2(Y; \mathbb{Z}) = 0$, the Least Spanning Area problem for a knot K can be solved in polynomial time.

Thm (D-H) Both OHCP and OBCP are NP-hard.

OHCP with mod 2 coefficients is **NP**-complete by [Chen-Freedman 2010].

Dey-H-Krishnamoorthy (2010) When X is relatively torsion free in dimension n, then the OHCP for $C_n(X;\mathbb{Z})$ can be solved in polynomial time.

Key: Applies when X is an orientable n + 1 manifold.

Thm (D-H) When X is relatively torsion free in dimension n and $H_n(X;\mathbb{Z}) = 0$, then the OBCP for $C_{n-1}(X;\mathbb{Z})$ can be solved in polynomial time.

Compare

Thm (D-H) When $H_2(Y; \mathbb{Z}) = 0$, the Least Spanning Area problem for a knot K can be solved in polynomial time.

Desingularization: a toy problem

In a triangulated rectangle X, find the shortest embedded path in the 1-skeleton joining vertices p and q.

Consider $b=q-p\in C_0(X;\mathbb{Z})$, which is 0 in $H_0(X;\mathbb{Z})$. Let $c\in C_1(X;\mathbb{Z})$ be a solution to the OBCP for b.

Claim: *c* corresponds to an embedded simplicial path.

Desingularization: a toy problem

In a triangulated rectangle X, find the shortest embedded path in the 1-skeleton joining vertices p and q.

Consider $b=q-p\in C_0(X;\mathbb{Z})$, which is 0 in $H_0(X;\mathbb{Z})$. Let $c\in C_1(X;\mathbb{Z})$ be a solution to the OBCP for b.

Claim: *c* corresponds to an embedded simplicial path.

Rest of desingularization

1. Pass to the exterior of the knot *K*.

2. Introduce a relative version of the Optimal Bounding Chain Problem.

Rest of desingularization

1. Pass to the exterior of the knot K.

2. Introduce a relative version of the Optimal Bounding Chain Problem.