A unified Casson-Lin invariant for the real forms of SL(2)

Nathan Dunfield (University of Illinois)

Joint with Jake Rasmussen

Based on arXiv:2209.03382

Notes already posted at: https://dunfield.info/tech2023.pdf A unified Casson-Lin invariant for the real forms of SL(2)

Nathan Dunfield (University of Illinois)

Joint with Jake Rasmussen

Based on arXiv:2209.03382

Notes already posted at: https://dunfield.info/tech2023.pdf Much learned about 3-manifolds by studying reps $\pi_1 M^3 \rightarrow G$ for G one of:

$$\mathrm{SL}_2\mathbb{C} = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \ \middle| \ a, b, c, d \in \mathbb{C}, \ \mathrm{det} = 1 \right\}$$

$$\mathrm{SU}_2 = \left\{ \left(\begin{array}{cc} a & b \\ -\overline{b} & \overline{a} \end{array} \right) \ \left| \ |a|^2 + |b|^2 = 1 \right\}$$

 $SL_2\mathbb{R}$

A unified Casson-Lin invariant for the real forms of SL(2)

Nathan Dunfield (University of Illinois)

Joint with Jake Rasmussen

Based on arXiv:2209.03382

Notes already posted at: https://dunfield.info/tech2023.pdf Much learned about 3-manifolds by studying reps $\pi_1 M^3 \rightarrow G$ for G one of:

Hyperbolic geometry [Thurston, ...] $SL_2\mathbb{C} = \left\{ \left(\begin{array}{c} a & b \\ c & d \end{array} \right) \mid a, b, c, d \in \mathbb{C}, \text{ det} = 1 \right\}$ $\approx \text{lsom}^+(\mathbb{H}^3)$

Gauge Theory [Casson, Floer, ...]

$$SU_2 = \left\{ \left(\begin{array}{c} a & b \\ -\overline{b} & \overline{a} \end{array} \right) \mid |a|^2 + |b|^2 = 1 \right\}$$
$$\approx Isom^+(S^2) = SO_3.$$

Left-Orderability $SL_2\mathbb{R} \approx Isom^+(\mathbb{H}^2).$

 SU_2 and $SL_2\mathbb{R}$ are the real forms of SL_2

Hyperbolic geometry [Thurston, ...]

$$SL_2\mathbb{C} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{C}, det = 1 \right\}$$
$$\approx Isom^+(\mathbb{H}^3)$$

Gauge Theory [Casson, Floer, ...]

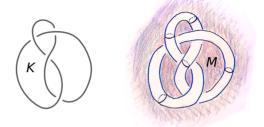
$$SU_2 = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \mid |a|^2 + |b|^2 = 1 \right\}$$

$$\approx \operatorname{Isom}^+(S^2) = SO_3.$$

Left-Orderability

 $SL_2\mathbb{R} \approx Isom^+(\mathbb{H}^2).$

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.



Set $A_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in G$ for $\theta \in (0, \pi)$ which rotates by 2θ , conj to $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ in $SL_2\mathbb{C}$. Have $SU_2 \cap SL_2\mathbb{R} = \{A_{\theta}\} = S^1$.

 SU_2 and $\mathrm{SL}_2\mathbb{R}$ are the real forms of SL_2

Hyperbolic geometry [Thurston, ...]

$$SL_2\mathbb{C} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{C}, det = 1 \right\}$$
$$\approx Isom^+(\mathbb{H}^3)$$

Gauge Theory [Casson, Floer, ...]

$$SU_2 = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \mid |a|^2 + |b|^2 = 1 \right\}$$

$$\approx \operatorname{Isom}^+(S^2) = SO_3.$$

Left-Orderability

 $SL_2\mathbb{R} \approx Isom^+(\mathbb{H}^2).$

 SU_2 and $\mathrm{SL}_2\mathbb{R}$ are the real forms of SL_2

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.

Set
$$A_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \in G$$
 for $\theta \in (0, \pi)$
which rotates by 2θ , conj to $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ in $SL_2\mathbb{C}$. Have $SU_2 \cap SL_2\mathbb{R} = \{A_{\theta}\} = S^1$.

Hyperbolic geometry [Thurston, ...]

$$\begin{aligned} \mathrm{SL}_2 \mathbb{C} &= \left\{ \left(\begin{array}{c} a & b \\ c & d \end{array} \right) \ \middle| \ a, b, c, d \in \mathbb{C}, \ \mathrm{det} = \mathbf{1} \right\} \\ &\approx \mathrm{Isom}^+ \big(\mathbb{H}^3 \big) \end{aligned}$$

Gauge Theory [Casson, Floer, ...]

$$\begin{split} \mathrm{SU}_2 = & \left\{ \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \mid |a|^2 + |b|^2 = 1 \right\} \\ & \approx \mathrm{Isom}^+(S^2) = \mathrm{SO}_3. \end{split}$$

Left-Orderability

 $SL_2\mathbb{R} \approx Isom^+(\mathbb{H}^2).$

SU_2 and $\mathrm{SL}_2\mathbb{R}$ are the real forms of SL_2

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.

Set $A_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \in G$ for $\theta \in (0, \pi)$ which rotates by 2θ , conj to $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ in $SL_2\mathbb{C}$. Have $SU_2 \cap SL_2\mathbb{R} = \{A_{\theta}\} = S^1$.

Let $X^{\theta}_{G}(M)$ be

 $\{\rho: \pi_1 M \to G \mid \rho(\mu) \text{ conj to } A_\theta\}$

"modulo conjugation by G". Set

$$D_M = \left\{ \theta \in (0,\pi) \mid \Delta_M(e^{2i\theta}) = 0 \right\}$$

Hyperbolic geometry [Thurston, ...]

$$SL_2\mathbb{C} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{C}, det = 1 \right\}$$
$$\approx Isom^+(\mathbb{H}^3)$$

Gauge Theory [Casson, Floer, ...]

$$SU_2 = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \mid |a|^2 + |b|^2 = 1 \right\}$$

$$\approx \operatorname{Isom}^+(S^2) = SO_3.$$

Left-Orderability

 $SL_2\mathbb{R} \approx Isom^+(\mathbb{H}^2).$

 SU_2 and $\mathrm{SL}_2\mathbb{R}$ are the real forms of SL_2

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.

Set $A_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \in G$ for $\theta \in (0, \pi)$ which rotates by 2θ , conj to $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ in $SL_2\mathbb{C}$. Have $SU_2 \cap SL_2\mathbb{R} = \{A_{\theta}\} = S^1$.

Let $X^{\theta}_{G}(M)$ be

 $\{\rho: \pi_1 M \to G \mid \rho(\mu) \text{ conj to } A_\theta\}$

"modulo conjugation by G". Set

$$D_M = \left\{ \theta \in (0,\pi) \mid \Delta_M(e^{2i\theta}) = 0 \right\}$$

A rep $\rho : \pi_1(M) \to SL_2\mathbb{C}$ is reducible when it preserves a line in \mathbb{C}^2 . The subset of **irred** reps is $X_G^{\theta, irr}(M)$. **Setting:** K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.

Set $A_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in G$ for $\theta \in (0, \pi)$ which rotates by 2θ , conj to $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ in $SL_2\mathbb{C}$. Have $SU_2 \cap SL_2\mathbb{R} = \{A_{\theta}\} = S^1$.

Let $X_G^{\theta}(M)$ be

 $\{\rho: \pi_1 M \to G \mid \rho(\mu) \text{ conj to } A_\theta\}$

"modulo conjugation by G". Set

$$D_M = \left\{ \theta \in (0,\pi) \mid \Delta_M(e^{2i\theta}) = 0 \right\}$$

A rep $\rho: \pi_1(M) \to SL_2\mathbb{C}$ is reducible when it preserves a line in \mathbb{C}^2 . The subset of **irred** reps is $X_G^{\theta, irr}(M)$.

[Lin, Herald, Heusner-Kroll '90s] For $\theta \notin D_M$, can define

 $h^{\theta}_{\mathrm{SU}_2}(M) = \text{signed count of } X^{\theta, \mathrm{irr}}_{\mathrm{SU}_2}(M)$

Moreover, $h_{SU_2}^{\theta}(M) = -\frac{1}{2}\sigma_K(e^{i2\theta})$, which is constant outside of D_M .

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.

Set $A_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \in G$ for $\theta \in (0, \pi)$ which rotates by 2θ , conj to $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ in $SL_2\mathbb{C}$. Have $SU_2 \cap SL_2\mathbb{R} = \{A_{\theta}\} = S^1$.

Let $X_G^{\theta}(M)$ be

 $\{\rho: \pi_1 M \to G \mid \rho(\mu) \text{ conj to } A_\theta\}$

"modulo conjugation by G". Set

$$D_M = \left\{ \theta \in (0,\pi) \mid \Delta_M(e^{2i\theta}) = 0 \right\}$$

A rep $\rho: \pi_1(M) \to \mathrm{SL}_2\mathbb{C}$ is reducible when it preserves a line in \mathbb{C}^2 . The subset of **irred** reps is $X_G^{\theta,\mathrm{irr}}(M)$.

[Lin, Herald, Heusner-Kroll '90s] For $\theta \notin D_M$, can define

 $h_{SU_2}^{\theta}(M) = \text{signed count of } X_{SU_2}^{\theta, \text{irr}}(M)$

Moreover, $h_{SU_2}^{\theta}(M) = -\frac{1}{2}\sigma_K(e^{i2\theta})$, which is constant outside of D_M .

[D-Rasmussen] Suppose *M* is *small*, i.e. has no closed essential surface. Then for $\theta \notin D_M$, can define

 $h^{\theta}_{\mathrm{SL}_2\mathbb{R}}(M) = \text{signed count of } X^{\theta, \mathrm{irr}}_{\mathrm{SL}_2\mathbb{R}}(M)$

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.

Set $A_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \in G$ for $\theta \in (0, \pi)$ which rotates by 2θ , conj to $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ in $SL_2\mathbb{C}$. Have $SU_2 \cap SL_2\mathbb{R} = \{A_{\theta}\} = S^1$.

Let $X_G^{\theta}(M)$ be

 $\{\rho: \pi_1 M \to G \mid \rho(\mu) \text{ conj to } A_\theta\}$

"modulo conjugation by G". Set

$$D_M = \left\{ \theta \in (0,\pi) \mid \Delta_M(e^{2i\theta}) = 0 \right\}$$

A rep $\rho: \pi_1(M) \to SL_2\mathbb{C}$ is reducible when it preserves a line in \mathbb{C}^2 . The subset of **irred** reps is $X_G^{\theta, irr}(M)$.

[Lin, Herald, Heusner-Kroll '90s] For $\theta \notin D_M$, can define

 $h_{SU_2}^{\theta}(M) = \text{signed count of } X_{SU_2}^{\theta, \text{irr}}(M)$

Moreover, $h_{SU_2}^{\theta}(M) = -\frac{1}{2}\sigma_K(e^{i2\theta})$, which is constant outside of D_M .

[D-Rasmussen] Suppose *M* is *small*, i.e. has no closed essential surface. Then for $\theta \notin D_M$, can define

 $h^{\theta}_{\mathrm{SL}_2\mathbb{R}}(M) = \text{signed count of } X^{\theta, \mathrm{irr}}_{\mathrm{SL}_2\mathbb{R}}(M)$

Moreover, there exists $h(M) \in \mathbb{Z}$ with

$$h(M) = h^{\theta}_{\mathrm{SU}_2}(M) + h^{\theta}_{\mathrm{SL}_2\mathbb{R}}(M)$$

for all $\theta \notin D_M$.

[Lin, Herald, Heusner-Kroll '90s] For $\theta \notin D_M$, can define

 $h_{SU_2}^{\theta}(M) = \text{signed count of } X_{SU_2}^{\theta, \text{irr}}(M)$

Moreover, $h_{SU_2}^{\theta}(M) = -\frac{1}{2}\sigma_{\mathcal{K}}(e^{i2\theta})$, which is constant outside of D_M .

[D-Rasmussen] Suppose *M* is *small*, i.e. has no closed essential surface. Then for $\theta \notin D_M$, can define

 $h^{\theta}_{\mathrm{SL}_2\mathbb{R}}(M) = \text{signed count of } X^{\theta,\mathrm{irr}}_{\mathrm{SL}_2\mathbb{R}}(M)$

Moreover, there exists $h(M) \in \mathbb{Z}$ with

 $h(M) = h^{\theta}_{\mathrm{SU}_2}(M) + h^{\theta}_{\mathrm{SL}_2\mathbb{R}}(M)$

for all $\theta \notin D_M$.

Cor. If *M* is small with σ_K nonconstant, then there is an irred $\rho: \pi_1 M \to SL_2 \mathbb{R}$.

Pf. As σ_K is nonconst., so is $h^{\theta}_{SU_2}(M)$ $\implies h^{\theta}_{SL_2\mathbb{R}}(M)$ nonconstant \implies some θ_0 with $h^{\theta_0}_{SL_2\mathbb{R}}(M) \neq 0$ $\implies X^{\theta_0, irr}_{SL_2\mathbb{R}}(M)$ is nonempty. [Lin, Herald, Heusner-Kroll '90s] For $\theta \notin D_M$, can define

 $h_{SU_2}^{\theta}(M) = \text{signed count of } X_{SU_2}^{\theta, \text{irr}}(M)$

Moreover, $h_{SU_2}^{\theta}(M) = -\frac{1}{2}\sigma_{\mathcal{K}}(e^{i2\theta})$, which is constant outside of D_M .

[D-Rasmussen] Suppose *M* is *small*, i.e. has no closed essential surface. Then for $\theta \notin D_M$, can define

 $h^{\theta}_{\mathrm{SL}_{2}\mathbb{R}}(M) = \text{signed count of } X^{\theta,\mathrm{irr}}_{\mathrm{SL}_{2}\mathbb{R}}(M)$

Moreover, there exists $h(M) \in \mathbb{Z}$ with

$$h(M) = h^{\theta}_{\mathrm{SU}_2}(M) + h^{\theta}_{\mathrm{SL}_2\mathbb{R}}(M)$$

for all $\theta \notin D_M$.

Cor. If *M* is small with σ_K nonconstant, then there is an irred $\rho: \pi_1 M \to SL_2 \mathbb{R}$.

Pf. As σ_K is nonconst., so is $h^{\theta}_{SU_2}(M)$ $\implies h^{\theta}_{SL_2\mathbb{R}}(M)$ nonconstant \implies some θ_0 with $h^{\theta_0}_{SL_2\mathbb{R}}(M) \neq 0$ $\implies X^{\theta_0, irr}_{SL_2\mathbb{R}}(M)$ is nonempty.

Compare:

[Kronheimer-Mrowka] A nontrivial *K* has an irred $\rho: \pi_1 M \rightarrow SU_2$.

Cor. If *M* is small with σ_K nonconstant, then there is an irred $\rho: \pi_1 M \to SL_2 \mathbb{R}$.

Pf. As σ_K is nonconst., so is $h^{\theta}_{\mathrm{SU}_2}(M)$ $\implies h^{\theta}_{\mathrm{SL}_2\mathbb{R}}(M)$ nonconstant \implies some θ_0 with $h^{\theta_0}_{\mathrm{SL}_2\mathbb{R}}(M) \neq 0$ $\implies X^{\theta_0,\mathrm{irr}}_{\mathrm{SL}_2\mathbb{R}}(M)$ is nonempty.

Compare:

[Kronheimer-Mrowka] A nontrivial K has an irred $\rho: \pi_1 M \rightarrow SU_2$.

Motivation: L-space conjecture, orderability of 3-manifold groups, translation extension locus [Culler-D].

Let $\Sigma_n(K)$ be the *n*-fold cyclic cover of S^3 branched over *K*.

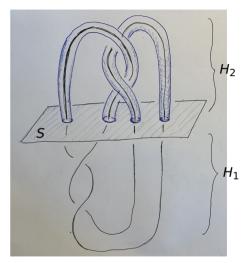
Cor. If *K* is a small knot with nonconstant σ_K then $\pi_1(\Sigma_n(K))$ is left-orderable for all $n \ge \pi/w_K$, where w_K depends on D_M .

Cor. If *K* is 2-bridge with $\sigma_K(-1) \neq 0$, then either $\pi_1(M(\alpha))$ is left-orderable for all $\alpha \in (-\infty, 1)$ or for all $\alpha \in (-1, \infty)$. **Motivation:** L-space conjecture, orderability of 3-manifold groups, translation extension locus [Culler-D].

Let $\Sigma_n(K)$ be the *n*-fold cyclic cover of S^3 branched over *K*.

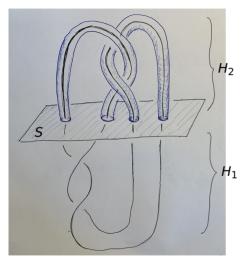
Cor. If *K* is a small knot with nonconstant σ_K then $\pi_1(\Sigma_n(K))$ is left-orderable for all $n \ge \pi/w_K$, where w_K depends on D_M .

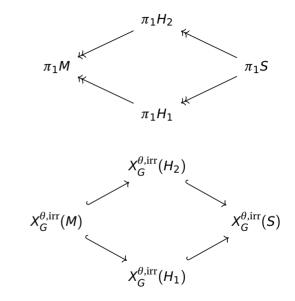
Cor. If *K* is 2-bridge with $\sigma_K(-1) \neq 0$, then either $\pi_1(M(\alpha))$ is left-orderable for all $\alpha \in (-\infty, 1)$ or for all $\alpha \in (-1, \infty)$. **Casson-Lin signs.** Write $M = H_1 \cup_S H_2$ using an *n*-bridge diagram for *K*:



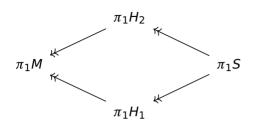
S is a 2-sphere minus 2n disks H_i are genus-n handlebodies

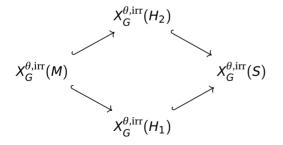
Casson-Lin signs. Write $M = H_1 \cup_S H_2$ using an *n*-bridge diagram for *K*:





S is a 2-sphere minus 2n disks H_i are genus-n handlebodies

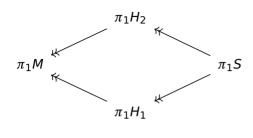


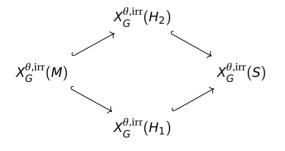


 $X_G^{\theta,\text{irr}}(S)$ is a smooth (4n-6)-manifold with $X_G^{\theta,\text{irr}}(H_i)$ submflds of dim 2n-3.

 $X_G^{\theta,\mathrm{irr}}(M) = X_G^{\theta,\mathrm{irr}}(H_1) \cap X_G^{\theta,\mathrm{irr}}(H_2).$ Everything has nat'l orientations, so define $h_G^{\theta}(M)$ to be the algebraic intersection number of the $X_G^{\theta,\mathrm{irr}}(H_i).$

Important: Even for $G = SU_2$, these manifolds are all noncpt. But $X_G^{\theta, irr}(M)$ is cpt when $\theta \notin D_M$ and M small.





 $X_G^{\theta,\text{irr}}(S)$ is a smooth (4n-6)-manifold with $X_G^{\theta,\text{irr}}(H_i)$ submflds of dim 2n-3.

$$\begin{split} X_G^{\theta,\mathrm{irr}}(M) &= X_G^{\theta,\mathrm{irr}}(H_1) \cap X_G^{\theta,\mathrm{irr}}(H_2). \\ \text{Everything has nat'l orientations, so} \\ \text{define } h_G^{\theta}(M) \text{ to be the algebraic} \\ \text{intersection number of the } X_G^{\theta,\mathrm{irr}}(H_i). \end{split}$$

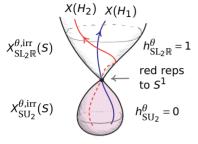
Important: Even for $G = SU_2$, these manifolds are all noncpt. But $X_G^{\theta, irr}(M)$ is cpt when $\theta \notin D_M$ and M small.

[DR] There exists $h(M) \in \mathbb{Z}$ with

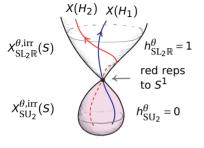
$$h(K) = h^{\theta}_{\mathrm{SU}_2}(M) + h^{\theta}_{\mathrm{SL}_2\mathbb{R}}(M)$$

for all $\theta \notin D_M$.

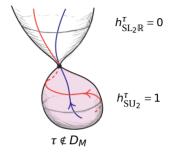
Unification: look at inside $X_{SL_2\mathbb{C}}^{\theta,irr}(S)$.

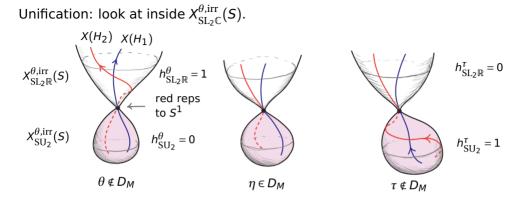


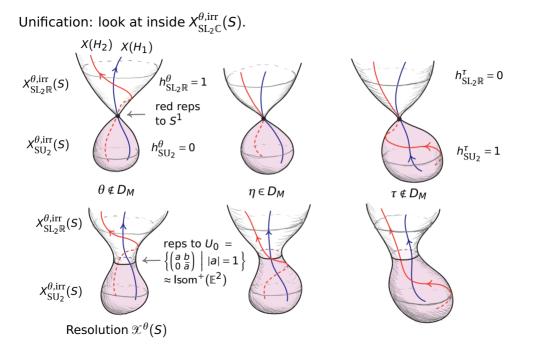
Unification: look at inside $X_{SL_2\mathbb{C}}^{\theta,irr}(S)$.

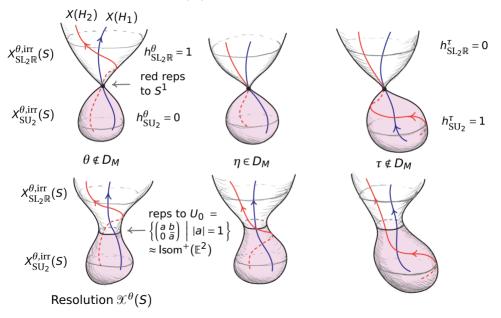


 $\theta \notin D_M$









Moral: in resolved picture h(M) is the alg $\cap \#$ of red and blue for **all** angles.