Math 526: HW 7 due Wednesday, December 10, 2014.

Notes: Assignment is complete. No class on Friday, December 5.

- 1. Suppose $p: E \to B$ is a fiber bundle with fiber F and structure group G. Given $f: A \to B$ define $f^*(E) = \{(a, e) \in A \times E \mid f(a) = p(e)\}$. Prove that the projection $\pi_A: f^*(E) \to A$ is a fiber bundle with same fiber and structure group as $E \to B$; it is called the *pullback bundle* of $E \to B$ under f.
- 2. Let US^2 be the unit tangent bundle to S^2 . Concretely,

$$US^{2} = \left\{ (x, v) \in \mathbb{R}^{3} \times \mathbb{R}^{3} \mid |x| = |v| = 1 \text{ and } x \cdot v = 0 \right\}$$

More abstractly, US^2 is the subspace of the tangent bundle TS^2 consisting of tangent vectors that are unit-length with respect to the usual round Riemannian metric.

- (a) Show that the map $p: US^2 \to S^2$ is a principal bundle with structure group $S^1 = SO(2)$.
- (b) Prove that US^2 , SO(3), and $\mathbb{R}P^3$ are all homeomorphic.
- 3. Regard $\mathbb{C}P^n$ as the set of lines in \mathbb{C}^{n+1} . Consider $E^n = \{(z,L) \in \mathbb{C}^{n+1} \times \mathbb{C}P^n \mid z \in L\}$ which has a natural projection $p_n: E^n \to \mathbb{C}P^n$. Prove that $p_n: E^n \to \mathbb{C}P^n$ is a complex vector bundle where the fibers are copies of \mathbb{C} . Such bundles are called "complex line bundles".

Contextual note: Taking unions, we get a complex line bundle $p: E \to \mathbb{C}P^{\infty}$. It turns out that this is the universal line bundle in the following sense. By problem (a), given $f: B \to \mathbb{C}P^{\infty}$ we get a complex line bundle $f^*(E)$ over *B*. In fact, isomorphism classes of complex line bundles over *B* are in bijective correspondence with $[B, \mathbb{C}P^{\infty}] \cong H^2(B; \mathbb{Z})$. The cohomology class associated to a complex line bundle over *B* is called the first Chern class.

- 4. Fix once and for all three distinct points a_1, a_2, a_3 in S^2 . Let $B = S^2 \setminus \{a_1, a_2, a_3\}$. Given $b \in B$, let T_b be the 2-fold cover of $B \setminus \{b\}$ so that a small loop about one of the deleted points $\{a_1, a_2, a_3, b\}$ does *not* lift to T_b .
 - (a) Show that *T_b* is a 2-torus *T_b* with four points deleted. Show also that the covering map *T_b* → *B* \ *b* extends to a continuous map of *T_b* → *S*² which looks like *z* → *z*² on C near each of {*a*₁, *a*₂, *a*₃, *b*}.
 Note: The map *T_b* → *S*² is an example of a branched or ramified covering map. This particular map is often called the quotient of the 2-torus by the elliptic involution.
 - (b) Show that you can build a bundle $p: E \to B$ with fiber \mathbb{Z}^2 and structure group $\operatorname{GL}_2\mathbb{Z}$ by taking $p^{-1}(b) = H_1(\overline{T}_b;\mathbb{Z})$.
 - (c) Prove that *E* is not isomorphic to the trivial bundle $B \times \mathbb{Z}^2$.
 - (d) Prove or disprove: $H_*(B; E) = 0$.