Math 526: HW 7 due Friday, December 10, 2021.

1. Suppose $p: E \rightarrow B$ is a fiber bundle with fiber F and structure group G. Given $f: A \rightarrow B$ define $f^{*}(E)=\{(a, e) \in A \times E \mid f(a)=p(e)\}$. Prove that the projection $\pi_{A}: f^{*}(E) \rightarrow A$ is a fiber bundle with same fiber and structure group as $E \rightarrow B$; it is called the pullback bundle of $E \rightarrow B$ under f.
2. Let $U S^{2}$ be the unit tangent bundle to S^{2}. Concretely,

$$
U S^{2}=\left\{(x, v) \in \mathbb{R}^{3} \times \mathbb{R}^{3}| | x|=|v|=1 \text { and } x \cdot v=0\}\right.
$$

More abstractly, $U S^{2}$ is the subspace of the tangent bundle $T S^{2}$ consisting of tangent vectors that are unit-length with respect to the usual round Riemannian metric.
(a) Show that the map $p: U S^{2} \rightarrow S^{2}$ is a principal bundle with structure group $S^{1}=\mathrm{SO}$ (2).
(b) Prove that $U S^{2}, \mathrm{SO}(3)$, and $\mathbb{R} \mathrm{P}^{3}$ are all homeomorphic.
3. Regard $\mathbb{C} \mathbb{P}^{n}$ as the set of lines in \mathbb{C}^{n+1}. Consider $E^{n}=\left\{(z, L) \in \mathbb{C}^{n+1} \times \mathbb{C P}^{n} \mid z \in L\right\}$ which has a natural projection $p_{n}: E^{n} \rightarrow \mathbb{C} P^{n}$. Prove that $p_{n}: E^{n} \rightarrow \mathbb{C} P^{n}$ is a complex vector bundle where the fibers are copies of \mathbb{C}. Such bundles are called "complex line bundles".

Contextual note: Taking unions, we get a complex line bundle $p: E \rightarrow \mathbb{C} \mathrm{P}^{\infty}$. It turns out that this is the universal line bundle in the following sense. By problem (a), given $f: B \rightarrow \mathbb{C} P^{\infty}$ we get a complex line bundle $f^{*}(E)$ over B. In fact, isomorphism classes of complex line bundles over B are in bijective correspondence with $\left[B, \mathbb{C} P^{\infty}\right] \cong H^{2}(B ; \mathbb{Z})$. The cohomology class associated to a complex line bundle over B is called the first Chern class.
4. Fix once and for all three distinct points a_{1}, a_{2}, a_{3} in S^{2}. Let $B=S^{2} \backslash\left\{a_{1}, a_{2}, a_{3}\right\}$. Given $b \in B$, let T_{b} be the 2-fold cover of $B \backslash\{b\}$ so that a small loop about one of the deleted points $\left\{a_{1}, a_{2}, a_{3}, b\right\}$ does not lift to T_{b}.
(a) Show that T_{b} is a 2-torus \bar{T}_{b} with four points deleted. Show also that the covering map $T_{b} \rightarrow B \backslash b$ extends to a continuous map of $\bar{T}_{b} \rightarrow S^{2}$ which looks like $z \mapsto z^{2}$ on \mathbb{C} near each of $\left\{a_{1}, a_{2}, a_{3}, b\right\}$.
Note: The map $\bar{T}_{b} \rightarrow S^{2}$ is an example of a branched or ramified covering map. This particular map is often called the quotient of the 2 -torus by the elliptic involution.
(b) Show that you can build a bundle $p: E \rightarrow B$ with fiber \mathbb{Z}^{2} and structure group $\mathrm{GL}_{2} \mathbb{Z}$ by taking $p^{-1}(b)=H_{1}\left(\bar{T}_{b} ; \mathbb{Z}\right)$.
(c) Prove that E is not isomorphic to the trivial bundle $B \times \mathbb{Z}^{2}$.
(d) Prove or disprove: $H_{*}(B ; E)=0$.

