Math 500: HW 5 due Friday, September 22, 2023.

Webpage: http://dunfield.info/500

Office hours: Wednesdays 1:30–2:30pm and Thursdays 2:00–3:00pm; additional times possible by appointment.

Textbook: Dummit and Foote, Abstract Algebra, 3rd edition.

Suplemental text: Charles Rezk, Lecture Notes for Math 500, posted on our course webpage.

1. Let *G* be the set \mathbb{Z}^2 , with binary operation defined by

 $(x_1, y_1) \cdot (x_2, y_2) := (x_1 + x_2, y_1 + y_2 + x_1x_2).$

Show that (G, \cdot) is a finitely generated abelian group, and determine its invariant factor form.

- 2. A subgroup $H \leq G$ is *characteristic* if $\phi(H) = H$ for every $\phi \in Aut(G)$.
 - (a) Prove than every characteristic subgroup is normal. Also, give an example showing that a normal subgroup need not be characteristic.
 - (b) Show that if $H, K \le G$ are characteristic subgroups with HK = G and $H \cap K = \{e\}$, then $Aut(G) \approx Aut(H) \times Aut(K)$.
- 3. Recall that a group *H* is *simple* when its only normal subgroups are $\{e\}$ and *H* itself. Let G_1, \ldots, G_n be non-abelian simple groups, and let $G = G_1 \times \cdots \times G_n$. Show that every normal subgroup of *G* is of the form G_I for some subset $I \subseteq \{1, \ldots, n\}$, where

$$G_I = \{(x_1, \ldots, x_n) \in G \mid x_k = e \text{ for all } k \in I\}.$$

4. Let *G* be the set \mathbb{Z}^3 with binary operation defined by

$$(x_1, y_1, z_1) \cdot (x_2, y_2, z_2) := (x_1 + x_2, y_1 + y_2, z_1 + z_2 + y_1 x_2).$$

Show that *G* is a non-abelian group. Then identify an infinite cyclic normal subgroup $H \le G$ such that G/H is isomorphic to a product of two infinite cyclic groups. (That is, show that *G* is an extension of \mathbb{Z}^2 by \mathbb{Z} .) Is this extension split?

- 5. Suppose *G* is a semidirect product of $H \leq G$ and $K \leq G$, with $\phi: K \to \operatorname{Aut}(H)$ defined by conjugation. Show that $C_G(H) \cap K = \operatorname{ker}(\phi)$ and $C_G(K) \cap H = N_G(K) \cap H$.
- 6. Show that there are exactly 4 distinct homomorphisms $C_2 \rightarrow \text{Aut}(C_8)$. Prove that the resulting semidirect products give 4 nonisomorphic groups of order 16.
- 7. Show that D_n is nilpotent if and only if n is a power of 2.
- 8. Let $G = GL_2(\mathbb{F}_3)$. Determine (i) the subgroups $G^{(k)}$ in the derived series of G, and (ii) the subgroups $Z_k(G)$ in the upper central series of G. In both cases, determine the quotient groups $G^{(k-1)}/G^{(k)}$ and $Z_k(G)/Z_{k-1}(G)$ up to isomorphism.

Credit: Problems 2, 4, 6, and 8 are from [DF] and Problems 1, 3, 5, and 7 from [R].