Math 500: HW 7 due Friday, October 13, 2023.

Webpage: http://dunfie1d.info/500
Office hours: Wednesdays 1:30-2:30pm and Thursdays 2:00-3:00pm; additional times possible by appointment.

1. Let $R=\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ as a subring of \mathbb{R}. Show that $x \in R^{\times}$if and only if $N(x) \in \mathbb{Z}^{\times}$, where $N(a+b \sqrt{2})=a^{2}-2 b^{2}$. Then show that R^{\times}has an element of infinite order. Hint: use that N is multiplicative.
2. Let $S=\mathbb{Z}[\sqrt{-3}]=\{a+b \sqrt{-3} \mid a, b \in \mathbb{Z}\}$. Determine the group of units S^{\times}. Then show that S is not a UFD, by finding an element with two inequivalent factorizations. Hint: use the function $N(a+b \sqrt{-3}):=|a+b \sqrt{-3}|^{2}=a^{2}+3 b^{2}$.
3. Assume R is a commutative ring with 1 , and that for each $a \in R$ there is an $n>1$ such that $a^{n}=a$. Show that every prime ideal of R is a maximal ideal.
4. Let A be a non-zero finitely generated ideal of a ring R. Use Zorn's Lemma to prove that there is an ideal B which is maximal with respect to the property that it does not contain A.
5. Prove that the ring \mathcal{O} of quadratic integers in $\mathbb{Q}(\sqrt{2})$ is a Euclidean domain, using the function $a+b \sqrt{2} \mapsto\left|a^{2}-2 b^{2}\right|$.
6. Prove that the quotient ring $\mathbb{Z}[i] / I$ is finite for every non-trivial ideal I. Hint: Use the fact that $I=(\alpha)$ for some nonzero α and the use the division algorithm in this Euclidean domain to see that every coset of I is represented by an element of norm less than $N(\alpha)$.
7. Prove that a quotient of a PID by a prime ideal is a PID.
8. Let $R=\mathbb{Z}[\sqrt{-n}]$, where n is a squarefree integer >3.
(a) Prove that $2, \sqrt{-n}$, and $1+\sqrt{-n}$ are irreducibles in R.
(b) Prove that R is not a UFD. Hint: show that either $\sqrt{-n}$ or $1+\sqrt{-n}$ is not prime.
9. (a) Prove that the quotient ring $\mathbb{Z}[i] /(1+i)$ is a field of order 2.
(b) Let $q \in \mathbb{Z}$ be a prime with $q \equiv 3 \bmod 4$. Prove that the quotient ring $\mathbb{Z}[i] /(q)$ is a field with q^{2} elements.
(c) Let $p \in \mathbb{Z}$ be a prime with $p \equiv 1 \bmod 4$ and write $p=\pi \bar{\pi}$ where π and its complex conjugate $\bar{\pi}$ are prime elements. Apply the Chinese Remainder Theorem (Section 7.6 of [DF] or Section 24 of $[\mathrm{R} 2])$ to see that $\mathbb{Z}[i] /(p) \cong \mathbb{Z}[i] /(\pi) \times \mathbb{Z}[i] /(\bar{\pi})$ as rings. Then show $\mathbb{Z}[i] /(p)$ has order p^{2} and use this to conclude that $\mathbb{Z}[i] / \pi$ and $\mathbb{Z}[i] / \bar{\pi}$ are both fields or order p.
10. Determine all the ideals of the ring $\mathbb{Z}[x] /\left(2, x^{3}+1\right)$.

Credit: Problems 1-2 are from [R] and the rest from [DF].

