Math 500: HW 11 due Friday, November 17, 2023.

Webpage: http://dunfie1d.info/500
Office hours: Wednesdays 1:30-2:30pm and Thursdays 2:00-3:00pm; additional times possible by appointment.

1. Let K / F be an extension of degree n.
(a) For $\alpha \in K$, prove that multiplication by α defines an F-linear transformation $T_{\alpha}: K \rightarrow K$.
(b) Prove that K is isomorphic to a subring of $M_{n \times n}(F)$.
(c) Prove that the minimal polynomial $m_{\alpha, F}(x)$ is the same as the minimal polynomial of the linear transformation T_{α}. Note: Thus α satisfies the characteristic polynomial of T_{α}. This can be used to help find minimal polynomials.

Thus, the ring of $n \times n$ matrices contains every degree n extension over F as a subring, up to isomorphism.
2. Determine the splitting field and its degree over \mathbb{Q} for $x^{4}+2$.
3. Determine the splitting field and its degree over \mathbb{Q} for $x^{4}+x^{2}+1$.
4. Let $\phi: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ be the Frobenius map. Determine the minimal polynomial and the rational canonical form of ϕ as an \mathbb{F}_{p}-linear map on the n-dimensional vector space $\mathbb{F}_{p^{n}}$.
5. A field element ζ is a root of unity if $\zeta^{n}=1$ for some $n>0$. Prove that if K is a finite extension of \mathbb{Q} then it contains only finitely many roots of unity.
6. Let $\zeta=e^{2 \pi i / 8}$. Show that $\sqrt{2} \in K=\mathbb{Q}(\zeta)$. Then determine the minimal polynomial of ζ over $F=\mathbb{Q}(\sqrt{2})$, and use this to describe all field homomorphisms $\phi: \mathbb{Q}(\zeta) \rightarrow \mathbb{C}$ such that $\left.\phi\right|_{F}=\mathrm{id}_{F}$.
7. Recall that $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\alpha)$, where $\alpha=\sqrt{2}+\sqrt{3}$. Show that L / \mathbb{Q} is a splitting field of $f=x^{4}-10 x^{2}+1$, and describe how $G=\operatorname{Aut}(L / \mathbb{Q})$ permutes the roots of f.
8. Let $\zeta=e^{2 \pi i / 12}$ be a primitive 12 th root of unity.
(a) Prove that ζ is a zero of the polynomial $f=x^{4}-x^{2}+1$, and that the other zeros are ζ^{5}, ζ^{7}, ζ^{11}.
(b) Show that $\zeta \notin \mathbb{Q}\left(\zeta^{2}\right)$.
(c) Prove that f is irreducible over \mathbb{Q}, and that it is the minimal polynomial of ζ over \mathbb{Q}.
(d) Prove that $\mathbb{Q}(\zeta) / \mathbb{Q}$ is a splitting field of f.
9. Let ζ be as in the previous problem. Show that $G:=\operatorname{Aut}(\mathbb{Q}(\zeta) / \mathbb{Q})$ is isomorphic to $\mathbb{Z} / 2 \times \mathbb{Z} / 2$.

Credit: Problems 6-9 by Charles Rezk, rest from Dummit and Foote.

